Verdugo Fire Academy Ventilation: Anatomy of an Opening Part 2 CSFM Unit L FFFS Chapter 14

CALIFORNIA STATE FIRE MARSHAL

89 m

Michael Daoust Long Beach Fire Department

VENTILATION Anatomy of an Opening

A ventilation opening is a specific opening that is utilized to remove concentrations of heat, smoke and toxic gases from a structure, and/or redirect the travel of fire.

VENTILATION Anatomy of an Opening

There are Offensive and **Defensive Operations in** Ventilation

We will look at them both...

VENTILATION Anatomy of an Opening

Offensive ventilation operations should be located:

- •As close to the fire as possible
- As soon as conditions permit
- Ousually accomplished by creating an opening in a roof as close to the seat of the fire as possible

VENTILATION Anatomy of an Opening

Offensive ventilation is an aggressive approach to

ventilation.

VENTILATION Anatomy of an Opening

OFFENSIVE OPERATIONS =

- 1. Save Lives.
- 2. Improve environment for Rescue and firefighting
- 3. Reduce Property damage caused by the extension of fire though lateral spread or the mushrooming effect

VENTILATION Anatomy of an Opening

DEFENSIVE OPERATIONS = Parking Lots

 Normally placed away from the seat of the fire or

ahead of an extending fire to minimize horizontal extension

o Should be considered after offensive ventilation openings have been initiated, completed, or have NOT been able to be initiated.

g	AR7HD
	· 一个一个
d	
	BREAKING NEWS
	Long Beach EYEWITNESS NEWS
	EYEWITNESS NEWS

VENTILATION Anatomy of an Opening

Defensive ventilation opening placed away from the seat of the fire. Example: Trench Cut

Types of Ventilation Openings

Three basic types of ventilation openings

- Natural Openings
- ·Heat openings
- Directional Openings

Types of Ventilation Openings

Natural Openings

- OUsed for speedOMinimize structural damage
- Only used in close proximity to the fire

Types of Ventilation Openings

Natural Openings

Skylights, Roof Scuttles, Elevator House, Air Shafts, Penthouses, Ventilators

Types of Ventilation Openings

Natural Openings

Skylights indicator of floor plan: Residential = hallways Industrial=manufacturing area

Some over: stairways, air shaft

Types of Ventilation Openings

 Natural Openings... note: Ventilators are designed to remove heat, they are 30% more efficient when the turbine is in operation.

Types of Ventilation Openings

Heat Openings

- Openings over a fire (or as close to the seat of the fire as possible)
- Offensive Operations
- When cut by firefighters are call "HEAT HOLES"
- •Vertically channel a fire and exhaust contaminants from a fire up and out of the building.

Types of Ventilation Openings Heat Opening

Types of Ventilation Openings

- Directional Openings
 - Are openings placed ahead of a horizontally traveling fire
 - •Used to control the spread of a fire by changing its horizontal direction to a vertical direction
 - Usually considered defensive operations
 - •Referred to as "Strip or Trench Cuts"

Types of Ventilation Openings

Directional Opening

Types of Ventilation Openings

To adequately ventilate any building a ventilation opening must be commensurate with the amount of heat and smoke/gasses to be ventilated

- A rough starting point is 10% of the area to be ventilated or a 4X8 hole
- PRACTICAL approach: if contaminants are venting under pressure, the ventilation opening needs to be enlarged or additional openings initiated
- As long as contaminates are venting under pressure, keep enlarging the ventilation opening!

Size of Ventilation Openings

The size of ventilation openings should be governed by the following 3 factors

- Type (offensive/defensive)
- Ease of removal
- Location

Size of Ventilation Openings

Type (offensive/defensive)

Ventilation openings that are cut over a fire (offensive) are usually square or rectangular

(defensive) openings are usually long and narrow

Size of Ventilation Openings

Ease of Removal

The Ventilation openings created should enhance the ease of removal

This does not imply that the opening should be small; they should be easy to open

Size of Ventilation Openings

Decking material is difficult or impossible to remove when nailed to multiple rafters. If 2 additional cuts (dicing) are made (dotted lines), in addition to four perimeter cuts, the opening would be changed from one large section of decking to 3 smaller section of decking

Size of Ventilation Openings

It is easier to remove decking that is nailed to one rafter (center rafter cut) than multiple rafters.

Location of Ventilation Openings

- The location of an opening is based on the following 3 things...
 - Natural Openings
 - **■** Offensive or Defensive Operations
 - **■** Building Construction

Location of Ventilation Openings

Review...

Natural Openings

Natural openings are "in place" prior to the arrival of firefighters at a structure fire. However, they should only be used when properly located in relation to the fire or contaminants to be ventilated

· Offensive or Defensive Operations

Offensive operations will initially place an opening (square or rectangle) as close to the seat of a fire as possible, and defensive operations will initially place an opening (long and narrow) ahead of an extending fire

Location of Ventilation Openings

Building Construction

The type of construction of the building will play a major factor in determining the location of a ventilation opening...

The type of construction = TIME. Based on the type of construction you can make decision on where, when and how.

Things to remember...

Determining where to ventilate...

- * Location of fire
- **x**Safest, highest point on the roof
- **#**Direction of wind
- ***Existing exposures**
- *****Obstructions
- *Extent of the fire

Note: If the fire has been burning for more than 20 minutes the roof should be considered unsafe

Things to remember...

Procedures

- Coordinate with ground and attack companies
- Use existing openings
 - ■Skylight
 - **■**Monitors
 - ■Stairway door
 - ■Scuttle hatches
- Cut one large hole rather than several small

■ Extend blunt object to break out ceiling

■ If the roof is too deep for your pike pole what can you do?

Things to remember...

Safety Precautions

- **■** Two means of escape
- Wind Direction in relation to exposures
- Weight on the roof
- **■** Cutting main structural supports
- **■** Work with the wind to your back
- Guard opening to prevent falls into the building

Things to remember...

Safety Precautions continued

- Maintain communication

 Work with suppression companies
- Watch for spongy roofs
 ■Sound roof
- Overhead obstructions ■Wires
- Firm footing ■Roof ladder for support
- Appropriate PPE
- Watch for concealed spaces

			1	
1	1	64		
	-1			
		1		

_	
-	
-	
•	
-	
_	
-	
-	
_	
•	
-	
_	
-	
-	
•	
-	
-	

Ventilation	
You are only getting the basics.	
rou are only getting the basics.	
Truck work take time to master.	
Manking Erra Anadomu	