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INTRODUCTION

This dictionary is specifically designed for
two-year college students. It contains all the
important mathematical terms the students
would encounter in any mathematics classes
they take. From the most basic mathemat-
ical terms of Arithmetic to Algebra, Calcu-
lus, Linear Algebra and Differential Equa-
tions. In addition we also included most of
the terms from Statistics, Business Calculus,
Finite Mathematics and some other less com-
monly taught classes. In a few occasions we
went beyond the standard material to satisfy
curiosity of some students. Examples are the
article ”Cantor set” and articles on solutions
of cubic and quartic equations.
The organization of the material is strictly
alphabetical, not by the topic. There are ap-
proximately a total of 1200 entries in this
dictionary. Some of them are just simple
one-two sentence definitions while others are
pretty detailed articles with definitions and
even worked examples. All the entries are in
lowercase letters unless they contain a proper
name. In text, however, some terms might
appear in capitalized form in expressions such
as Fundamental Theorem of Calculus, Mean
value theorem and so on. There are also
about eighty illustrations of major functions
and geometric figures. Most of the pictures
are created by the author and others are im-
ported from open internet sources such as
Google and Wikipedia.
Because this is an electronic book and not a
traditional hard copy book it is worth writing
a few words how we think it should be used
the best. The last few years brought lots of

changes in how students work with the books
and treat them. More and more students opt
for electronic books and ”carry” them in their
laptops, tablets, and even cellphones. This is
a trend that seemingly cannot be reversed.
This is why we have decided to make this an
electronic and not a print book and post it
on Mathematics Division site for anybody to
download.

Here is how we envision the use of this dictio-
nary. As a student studies at home or in the
class he or she may encounter a term which
exact meaning is forgotten. Then instead of
trying to find explanation in another book
(which may or may not be saved) or going
to internet sources they just open this dictio-
nary for necessary clarification and explana-
tion.

Why is this a better option in most of the
cases? First of all internet search usually
results in multiple, sometimes hundreds of
choices and that already creates problems.
Second, many of these sources are rather gen-
eral and do not have in mind specifically
the level of the students in community col-
leges. Many of them are actually designed
with specialists in mind and contain material
that might confuse the student rather than
help. As an example, if a student needs to
recall the topic ”Partial fractions” and ends
up in Wikipedia then the explanation would
be a very long, general, and confusing one
containing lots of unnecessary material. The
total number of pages corresponding to that
particular entry in Wikipedia (after convert-
ing into Word format) is about 12 pages. In
contrast, the explanation in this dictionary
is very concise, contains only the necessary
cases and fits on four Word pages, including
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worked examples of all cases.

Traditional dictionaries use italics to indicate
that the given word has its own entry. Elec-
tronic books present additional opportunity
for the same purpose and especially for quick
finding of the indicated terms, namely hyper-
links. In this book we use a combination of
both methods and it is worth to clarify fur-
ther how and when each of these approaches
used in our dictionary. As the reader goes
through some article in the dictionary he or
she might need explanation, clarification, or
definition of certain terms used in that ar-
ticle. When we thought that it is impor-
tant and beneficial to the reader to refresh
the memory and clarify that term in order
to understand the article at hand we cre-
ated a hyperlink allowing immediately jump
to that term without scrolling through mul-
tiple pages. This is similar to most internet
sources, such as above mentioned Wikipedia.
For example, if the reader sees the expres-
sion characteristic equation, then by simply
clicking at that word he will jump to page
20 of the text where that term is defined and
explained. It is important to note however
that not all the terms are hyperlinked and
there are multiple reasons for that. First of
all, that would make many articles very diffi-
cult to read because of abundance of hyper-
links and would destruct reader from the ac-
tual article itself. In addition, there are many
terms so common that it is obvious that there
are specific articles for them. These terms in-
clude, but not limited to, words such as Num-
ber, Function, Polynomial, Equation, Inte-
gral, Derivative, Matrix, etc. In rare cases,
however, even some of these terms are hyper-
linked by the reason explained above. Be-

cause of these in many cases we just used
the traditional approach of emphasizing the
terms with italics and that also requires some
explanation. If the word is in italics then that
means one of the following :
1) There is an article for that particular term
but in author’s view it is not crucial to jump
there immediately in order to understand the
current article;
2) There may or may not be an article for
that term but the definition is contained in
this current article the reader is on;
3) There is an article for that term but it is
so close (might be the very next or just the
previous one) there is no need of hyperlink to
get there.
We hope that this hybrid approach would
make the use of dictionary as easy as possible.

Dr. Ashot Djrbashian
Mathematics Division
Glendale Community College
Glendale, CA
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A

Abel’s formula Also called Abel’s theorem, for
differential equations. Let y1 and y2 be solutions of
second order equation

L[y] = y′′ + p(t)y′ + q(t)y = 0,

where both p and q are continuous functions on some
interval I. Then by Abel’s theorem the Wronskian of
the equation is given by the formula

W (y1, y2) = c exp

[
−
∫
p(t) dt

]
,

where c is a constant that depends on solutions
y1, y2 only.

abscissa In the plane Cartesian coordinate system,
the name of the x-axis.

absolute maximum and minimum (1) For func-
tions of one variable. A number M in the range of
a given function f(x), such that f(x) ≤ M for all
values of x in the domain of f is the absolute maxi-
mum. Similarly, a number m in the range of a given
function f(x), such that f(x) ≥ m for all values of x
in the domain of f is the absolute minimum.
If the function f is given on a closed interval [a, b],
then to find absolute maximum and minimum values,
the following steps to be taken:
(a) Find all critical points (points, where the deriva-
tive f ′ is either zero or does not exist) of the function
on the open interval (a, b)
(b) Find the values of f at critical points and end-
points a and b.
(c) Compare all these values to determine the largest
and smallest. They will be the absolute maximum
and minimum values respectively. See also local max-
imum and minimum.
(2) For functions of several variables definitions
similar to the above are also valid. The critical
points are also used to find these maximum and
minimum points.

absolute value For a real number r, the non-
negative number |r| given by the formula

|r| =
{
r if r ≥ 0
−r if r < 0

Absolute value of a real number indicates the
distance between the point on the number line
corresponding to that number and the origin.

absolute value function The function f(x) = |x|,
defined for all real values x.

absolutely convergent series A series
∑∞
n=1 an

is absolutely convergent if the series formed with the
absolute values of its terms

∑∞
n=1 |an| converges. If

a series is absolutely convergent, then any rearrange-
ment of that series is also convergent and the sum is
the same as the original series.

acceleration In physics, the rate of change of
the velocity of a moving object. Mathematically,
if the distance traveled by the object is given by
the function s(t), then acceleration is the second
derivative of this function: a(t) = s′′(t).

acute angle An angle that measures between 0
and 90◦ in degree measure or between 0 and π/2 in
radian measure.
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addends In arithmetic, two or more numbers to be
added. Similarly, in algebra, two or more expressions
to be added.

addition One of the four basic operations in arith-
metic and algebra. By adding two (or more) numbers
we determine the sum of those numbers.

addition and subtraction of complex numbers
If a + ib and c + id are two complex numbers, then
their sum or difference is defined to be another com-
plex number, where the real part is the sum or differ-
ence of the real parts of the given numbers and the
imaginary part is the sum or difference of imaginary
parts: (a+ ib)± (c+ id) = (a± c) + i(b± d).

addition and subtraction of fractions If a
b and

c
d are two numeric fractions, then their sum or differ-
ence is formally defined to be the fraction

ad± cb
bd

.

In practice, to make calculations simpler, we first find
the least common denominator (LCD) of two denomi-
nators of given fractions, substitute both fractions by
equivalent fractions with the found LCD, and then
add or subtract these two fractions. Example: to
add 3

8 + 5
6 , we find the LCD of 8 and 6, which is 24,

substitute the given fractions by 9
24 + 20

24 = 29
24 .

addition and subtraction of functions Let
f(x), g(x) be two functions. Then the ”sum” func-
tion (f + g)(x) is defined to be the sum of their val-
ues: (f+g)(x) = f(x)+g(x). Similarly, (f−g)(x) =
f(x)− g(x).

addition and subtraction of matrices The sum
of two matrices is defined only if they have the same

dimensions: the same number of rows and columns.
If A and B are two m × n-matrices, then their sum
is defined to be the matrix C which has as elements
the sums of elements of the given matrices in each
position. Example: 1 1 −2

−1 0 4
5 −2 0

+

−2 2 3
1 −3 −4
−4 0 1


=

−1 3 1
0 −3 0
1 −2 1

 .

Subtraction of matrices is defined similarly.

addition and subtraction formulas In
trigonometry, the formulas

cos(φ+ θ) = cosφ cos θ − sinφ sin θ

cos(φ− θ) = cosφ cos θ + sinφ sin θ

sin(φ+ θ) = cosφ sin θ + sinφ cos θ

sin(φ− θ) = cosφ sin θ − sinφ cos θ

tan(φ+ θ) =
tanφ+ tan θ

1− tanφ tan θ

tan(φ− θ) =
tanφ− tan θ

1 + tanφ tan θ

Similar formulas also exist for other trigonometric
functions but are very rarely used.

addition and subtraction of vectors Let u =
(u1, u2, · · · , un) and v = (v1, v2, · · · , vn) be two vec-
tors in some n-dimensional vector space V . To add
or subtract these two vectors, we just add or subtract
their corresponding coordinates:

u± v = (u1 ± v1, u2 ± v2, · · · , un ± vn).
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In case of vectors in the plane, addition of vectors
has very simple geometric interpretation. It could
be described by the triangle law (also called paral-
lelogram law): Place the initial point of the second
vector on the terminal point of the first vector. The
vector connecting the initial point of the first one
with the terminal point of the second will be the
sum of these vectors.

addition property of equality Let A,B,C be
any algebraic expressions. If A = B, then A + C =
B + C.

addition property of inequalities Let A,B,C
be any algebraic expressions. If A ≤ B, then A+C ≤
B + C.

addition rule for probabilities (1) If two events,
A and B, are disjoint, then the addition rule is

P (A or B) = P (A) + P (B).

(2) In the more general case when two events might
have a common outcome, the addition rule is

P (A or B) = P (A) + P (B)− P (A and B).

Note also that the set {A or B} is the union of the
sets A and B and is denoted by A ∪ B and the set
{A and B} is the intersection of that sets and is
denoted by A ∩B.

additive identity An element e of some set S,that
has the property a+ e = a for any element a. In the
number system (real or complex), e = 0.

additive inverse For a given element a of some set
S, the element b with the property a + b = e, where
e is the additive identity. In the number system (real
or complex), e = 0 and b = −a.

adjacent angle Two angles that have common
vertex, one common side but no common interior
points.

adjacent side Any of two sides in a triangle which
make up the angle, are called adjacent. The other
side of the same triangle is the opposite side. In the
trigonometry of right triangles, this term is reserved
for one side of acute angle only, namely the side

which is the leg, not the hypotenuse of the triangle.

adjoint matrix Let A = (aij) be a square matrix
with real or complex entries and denote by Cij the
cofactor of the element aij . Then the matrix made
up by all cofactors,

C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
...

Cn1 Cn2 . . . Cnn


is called the adjoint of the given matrix and denoted
by adj(A). The adjoint matrix allows computation of
the inverse of the matrix A by the formula

A−1 =
1

det(A)
adj(A).

For a more practical way of determining the inverse
matrix see the corresponding entry.

Airy’s equation The second order equation

y′′ − xy = 0, −∞ < x <∞.

See series solution for exact form of the solution of
this equation.

algebra One of the main branches of mathematics,
that deals with numbers, variables, equations, etc.
and operations with them. In a more general setting,
the developments of classical algebra, namely linear
algebra and abstract algebra, deal with vectors, ma-
trices and structures such as groups, rings, fields and
others.

algebra of matrices The term is understood as
the collection of rules for operations with matrices:
addition, scalar multiplication, multiplication of ma-
trices, and inverses of matrices.

algebraic equation An equation involving just
algebraic function. Most common example is an al-
gebraic equation involving a polynomial: P (x) = 0
or P (x1, ..., xn) = 0, where P is a polynomial of one
or n variables respectively. Example: 4x5 − 3x4 +
x2 − 3x+ 5 = 0.
Additionally, algebraic equations include also ratio-
nal and radical equations.
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algebraic expression An expression which in-
volves numeric constants, one or more variables and
only the algebraic operations of addition, subtrac-
tion, multiplication, division, and root extraction.

algebraic function A function that involves the
algebraic operations of addition, subtraction, multi-
plication, division, and root extraction. The function

f(x) =
3
√

3x2 + 2x− 5

x4 − 2x3 + 1

is an algebraic function but g(x) = log(sinx) is not.

algebraic number A complex number z is an
algebraic number if it satisfies a non-trivial polyno-
mial equation P (z) = 0 for which the coefficients are
rational numbers. It is known that many irrational
numbers are not algebraic, in particular numbers π
and e. These kind of numbers are called transcen-
dental

algebraic operation One of the basic operations
of algebra: addition, subtraction, multiplication,
division, or root extraction.

algorithm A method or procedure of solving
a given problem or whole class of problems by a
limited number of standard operations.

almost linear system In differential equations.
Let A be a square matrix and x be a vector-function.
The system of equations

x′ = Ax + g(x)

is called almost linear, if the vector-function g is small
compared to x, i.e., if

||g(x)||
||x||

→ 0, x→ 0.

alternate angles When two parallel lines are
crossed by the third one (called a transversal),
eight angles are formed. Two pairs of non-adjacent
interior angles are called alternate. Alternate angles
are always equal. In picture below pairs a and d and

b and c are alternating angles.

alternating harmonic series The convergent se-
ries

∑∞
n=1(−1)n+1/n.

alternating series A numeric series where the suc-
cessive terms have opposite signs.

alternating series estimation theorem Let S =∑
(−1)n−1bn be the sum of an alternating series sat-

isfying conditions

0 ≤ bn+1 ≤ bn, lim
n→0

bn = 0.

Then the remainder Rn of the series satisfies the in-
equality |Rn| = |S − Sn| ≤ bn+1. See also error esti-
mate for alternating series.

alternating series test If
∑∞
n=1 an is an alternat-

ing series with

(i)|an+1| < |an| for all n and

(ii) lim
n→∞

|an| = 0,

then the series is convergent.

alternative hypothesis A hypothesis (statement)
that is contrary to the original (null) hypothesis.
Notations for this hypothesis are Ha or H1. The
form of the alternative hypothesis varies depending
on the form of the null hypothesis. If the null
hypothesis has the form H0 : µ = µ0, then for the
alternative hypothesis we have three possible forms:
Ha : µ 6= µ0, µ < µ0, or µ > µ0. Accordingly,
we have two-sided (or two-tailed), left-sided, or
right-sided alternative hypothesis. Some authors
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also accept different forms of null hypothesis, specif-
ically H0 : µ ≤ µ0 or µ ≥ µ0. In this situation the
alternative hypothesis will change accordingly. See
also null hypothesis, hypothesis testing.

altitude of a triangle The perpendicular segment
from any vertex of a triangle to the opposite side (or
its continuation). Depending on the type of triangle
(acute, right, obtuse), the altitude may or may not
be inside the triangle.

ambiguous case One of the cases of solving
triangles when two sides of a triangle and one angle
not formed by these sides are given (the case SSA).
In this case three outcomes are possible: triangle has
no solution, triangle has one definite solution, and
triangle has two definite solutions. In the following
examples the angles are denoted by A,B,C and
the sides are denoted by a, b, c and we follow the
convention that side a is opposite to angle A, side b
is opposite to angle B and side c is opposite to angle
C.

(1) Assume we know that a = 15, b = 25, A = 85◦.
Using the Law of sines we get

sinB = b
sinA

a
≈ 1.66 > 1,

which is impossible. This means that it is not possi-
ble to construct a triangle with the given values.
(2) Let a = 22, b = 12, A = 42◦. Here the use of
the Law of sines gives sinB ≈ 0.365 and solving
this equation we get two solutions: B ≈ 21.4◦

and B ≈ 158.6◦. The second angle is not possible
because otherwise the sum of angles would have been
greater than 180◦, hence the first one is valid only.
From here, C ≈ 116.6◦. The remaining element of
the triangle, the side c is found by another use of
the Law of sines: c = a sinC/ sinA ≈ 29.4 and the

triangle has unique solution.
(3) Here a = 12, b = 31, ;A = 20.5◦. As in the
previous case we find two solutions for the angle
B : B1 ≈ 64.8◦, B2 ≈ 115.2◦. Unlike the previous
case, here both are valid solutions. Continuing
again as in the previous case we get also two
solutions for the remaining elements. This means
that there are two possible triangles with the given
data (information). For the first one we have
B1 ≈ 64.8◦, C1 ≈ 94.7◦, c1 ≈ 34.15, and for the
second one B2 ≈ 115.2◦, C2 ≈ 44.3◦, c2 ≈ 23.93.
See also solving triangles for other possible cases.

amplitude of a graph For a graph of some pe-
riodic function the half of the difference between
absolute maximum and absolute minimum values.
This notion is mostly used for trigonometric func-
tions. Example: For the graph of the function
f(x) = 3 sinx the highest point (maximum) is 3 and
the lowest point (minimum) is -3. So, the amplitude
is a = (3− (−3))/2 = 3.

amplitude of trigonometric function For the
functions sin and cos, the half of the difference be-
tween absolute maximum and absolute minimum val-
ues. Hence, for the function a sin(bt+ c) +d, the am-
plitude will be |a|.

analytic function For real-valued functions of one
variable: the function is called analytic at some point
x = a, if it is infinitely differentiable on some neigh-
borhood of that point and its Taylor-MacLaurin se-
ries

∞∑
n=0

f (n)(a)

n!
(x− a)n

converges in a neighborhood of that point to the func-
tion itself. Not all infinitely differentiable functions
are analytic. The function

f(x) =

{
e−1/x

2

if x 6= 0
0 if x = 0

is infinitely differentiable, but all of its Taylor-
MacLaurin coefficients at the origin are zero and
hence the series does not represent the function f .
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analytic geometry One of the branches of ge-
ometry. Analytic geometry combines the geometric
and algebraic methods by introducing coordinate sys-
tems, and presenting geometric objects with the help
of algebraic functions and their graphs.

angle Geometric object, which consists of a point,
called vertex and two rays coming out of this point.
In trigonometry and calculus, angles usually are
placed in standard position, when the vertex is placed
at the origin of the Cartesian coordinate system, one
side, called initial, coincides with the positive half of
the x-axis and the other side, called terminal, can
have arbitrary direction. In this position angles can
be both positive and negative. The angles, where
the terminal side is moved counterclockwise, are con-
sidered positive and clockwise direction is considered
negative.
The two main measuring units for angles are the de-
gree measure and the radian measure. Two angles
with the same terminal side are called coterminal and
they differ in size by an integer multiple of a full cir-
cle, i.e. by multiple of 360◦ or 2π, depending on
measuring unit. Angles traditionally are classified by
their measure: An angle between 0 and 90 degrees
is called acute, a 90 degree angle is called right, be-
tween 90 and 180 degrees – obtuse and 180 degrees–
straight. Additionally, angles measuring 90, 180, 270
or 360 degrees are called quadrantal.

angle between curves is defined to be the angle
between tangent lines to these curves at the point of
intersection.

angle between vectors For vectors in inner prod-
uct spaces. If u,v are two vectors in the inner prod-
uct vector space V , then the angle θ between them is
determined from the relation

cos θ =
〈u,v〉
||u||||v||

,

where 〈u,v〉 is the inner product in V and ||u|| de-
notes the norm (magnitude, length) of the vector.

angle between vector and plane is defined to
be the complement of the angle between that vector
and the normal vector to the plane.

angle bisector See bisector of an angle.

angle of depression If an object is viewed from
above, then the angle between the horizontal line and
the line drown between the viewer and the object, is
the angle of depression.

angle of elevation If an object is viewed from be-
low, then the angle between the horizontal line and
the line drown between the viewer and the object, is
the angle of elevation.

ANOVA Stands for Analysis of Variance. It is a
collection of statistical methods designed to compare
means of two or more groups of values and general-
izes the normal distribution tests and t-tests.

angular speed The rate of change of the angle as
an object moves along a circle. If the angle is mea-
sured in radian measure and is denoted by θ, the
radius of the circle is r, then the angular speed is
given by the formula ω = θ

r .

annihilator A differential operator is an annihila-
tor for some function, if application of that operator
to the function results in zero function. Example:
The operator D2 + 4 is an annihilator for the func-
tion sin 2x, because

(D2 + 4) sin 2x =
d2

dx2
sin 2x+ 4 sin 2x = 0.

annual percentage rate The rate banks charge for
borrowed money, or pay for the money deposited. Ex-
pressed in percentages or equivalent decimal form.
For example, annual percentage rate of 9 percent is
translated into the numeric value 0.09, and APR 5.7
percent becomes 0.057.

annulus A region bounded by two concentric cir-
cles of different radiuses. Also called ring or washer.

antiderivative Another name for indefinite inte-
gral.The antiderivative of a function is a new function
which has that given function as its derivative.

antidifferentiation Same as finding the indefinite
integral.

antilogarithm For a number y and a base b, the
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number x such that logb x = y. Same as exponential
function.

approximate (1)The procedure of substituting for
the exact value of a number with a value close to the
exact value; (2) The procedure of substituting for the
values of a function by values of other, usually sim-
pler, functions. Most often the approximations are
done by polynomials or rational functions because of
the simple nature of these functions.

approximate integration The procedure of cal-
culating definite integrals, when exact integration is
impossible or difficult. There are various methods
of approximate integration. For specific methods see
midpoint rule, Simpson’s rule, trapezoidal rule, and
approximate integration by Riemann sums below.

approximate integration by Riemann sums
By the definition of definite integral, it is the limit of
Riemann sums, as the length of interval partitions ap-
proaches zero. Hence, each Riemann sum represents
an approximate value of the given integral. Formally,
let the function f(x) be defined on some interval [a, b]
and form the left Riemann sum

Rn =

n∑
i=1

f(xi−1)∆x.

Then the number Rn is the left endpoint approxima-

tion of the integral
∫ b
a
f(x)dx. The right endpoint

approximation is defined similarly.

approximation Collective term for different meth-
ods allowing to approximate numbers, functions, and
solutions of different types of equations, when exact
numbers or solutions are not available. For more de-
tails see linear approximation, quadratic approxima-
tion, Newton’s method, and approximation by Taylor
polynomials below.

approximation by differentials For a given dif-
ferentiable function f(x) around some point x =
a, the simplest approximation is by a line passing
through that point and with slope equal to the deriva-
tive of the function at that point: f ′(a). The equa-
tion of that line is given by

L(x) = f(a) + f ′(a)(x− a).

For values not too far from a this approximation
gives satisfactory results. Also called linear approxi-
mation.

approximation by Taylor polynomials If a
function f(x) can be expanded into a Taylor series

that converges to that function, then the partial sums
of that series become approximations to the function.
Let

f(x) =

∞∑
n=0

f (j)(a)

j!
(x− a)j

be that expansion around the point x = a. If f is
bounded by M > 0 in the interval |x− a| ≤ d and

Rn(x) =

∞∑
j=n+1

f (n)(a)

n!
(x− a)n

is the remainder of the series, then

|Rn(x)| ≤ M |x− a|n+1

(n+ 1)!
, |x− a| ≤ d.

This inequality, called Taylor’s inequality, tells that
the first n terms of the series represent a good ap-
proximation for the function f .
The graph in this article shows Taylor approxima-
tions of the function sinx by Taylor polynomials of
degree 1,2,3,4 and 5.

approximation problems Different problems
that come down to substituting the exact value of
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some quantity by a value different but close to the
actual value.

arc Usually, a connected portion of a circle. In
calculus, a connected portion of any smooth curve.

arc length formula (1) For the circle. If the ra-
dius is r and an arc is subtended over the angle of
measure θ (in radian measure), then the length of
the arc is given by the formula s = rθ.
(2) For a general curve on the plane given by the
function y = f(x) on interval [a, b]. The arc length is
given by the formula

L =

∫ b

a

√
1 + [f ′(x)]2 dx.

(3) For a curve in R3 given by parametric equations
x = x(t), y = y(t), z = z(t), where a ≤ t ≤ b, the
arc length is given by a similar formula

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt.

Formula for the parametric plane curve is similar,
with the last term missing.

arc length function The expression

s(x) =

∫ x

a

√
1 + [f ′(t)]2 dt,

which comes out in calculations of arc lengths, is the
arc length function.

arccosine function The inverse of the cosx func-
tion, denoted cos−1 x or arccosx. Represents the an-
gle θ on the interval [0, π] such that cos θ = x. The
domain of this function is [−1, 1] and the range is
[0, π]. We have the following differentiation formula:

d

dx
cos−1 = − 1√

1− x2
.

Archimedian spiral The polar curve r = θeiθ.
The parametric equation could be written as
x(t) = t cos t, y(t) = t sin t.

arcsine function The inverse of the sinx function,
denoted either sin−1 x or arcsinx. Represents the an-
gle θ on the interval [−π/2, π/2] such that sin θ = x.
The domain of this function is [−1, 1] and the range
is [−π/2, π/2]. We have the following differentiation
formula:

d

dx
sin−1 =

1√
1− x2

.

arctangent function The inverse of the tanx
function, denoted tan−1 x or arctanx. Represents
the angle θ on the interval (−π/2, π/2) such that
tan θ = x. The domain of this function is (−∞,∞)
and the range is (−π/2, π/2). The inverse functions
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cot−1 x, sec−1 x, csc−1 x are defined in a similar
manner. We have the following differentiation for-
mula:

d

dx
tan−1 =

1

1 + x2
.

area One of the basic notions of geometry used
in many branches of mathematics. Indicates the
”amount of plane” included in a certain plane region.

area between curves Let two curves be given by
the functions f(x) and g(x). Then the area between
that curves (on some interval [a, b]) is given by∫ b

a

|f(x)− g(x)|dx.

area function For a given non-negative function
f(x) defined and continuous on some interval [a, b],
the integral

A(x) =

∫ x

a

f(t) dt

is sometimes called area function, because it repre-
sents the area under the curve y = f(x) from point
a to x.

area of a circle For a circle with radius r, the
area is given by the formula A = πr2.

area of an ellipse The area of an ellipse is given
by the equation

x2

a2
+
y2

b2
= 1

is equal to πab. Because the area does not change
during translation, the same value for the area is
also true for translated ellipse.

area of geometric figures For a rectangle with

width w and length `, A = w · `. In the particular
case when the length and width are equal, we get
a square (of side a, for example) and the area is
A = a2.
For a triangle with base b and height h, A = 1

2b · h
For a parallelogram with base a and height h,
A = b · h
For a trapezoid with two parallel bases a and b and
height h, A = a+b

2 · h.
In general, the area of any polygon could be cal-
culated by dividing it into a number of triangles
or rectangles and adding the areas of these smaller
pieces. See also the corresponding definitions for
pictures and notations.

area in polar coordinates If a curve is given with
the polar equation r = f(θ), where a ≤ θ ≤ b, then
the area under that curve is equal to

A =
1

2

∫ b

a

[f(θ)]2dθ.

area of a sector The area of a sector of a circle
with radius r and the opening angle (in radian mea-
sure) θ is given by the formula A = 1

2r
2θ.

area of a surface See surface area.

area of a surface of revolution Assume we have
a surface obtained by revolving the smooth curve
y = f(x), a ≤ x ≤ b, about some line. Then, de-
noting by r the distance between arbitrary point x
on interval [a, b] and the line, the surface area can be
expressed as

S =

∫ b

a

2πr
√

1 + (f ′(x))2dx.

area under the curve If a curve is given by the
function f(x) ≥ 0, then the area under that curve
from point a to point b is given by the definite integral∫ b

a

f(x)dx.

area under a parametric curve Suppose the
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curve y = F (x), F (x) ≥ 0, is written in paramet-
ric form x = f(t), y = g(t), α ≤ t ≤ β. Then the
area under that curve (under the condition that this
curve traverses only once as t increases from α to β)
is given by the formula

A =

∫ β

α

g(t)f ′(t)dt.

argument of a complex number In the trigono-
metric representation of a complex number z =
reiθ = r(cos θ + i sin θ) the angle θ.

argument of a function In a function y = f(x)
the independent variable x. Also, in a function of
any number of variables, y = f(x1, x2, · · · , xn), the
independent variables x1, x2, · · · , xn.

arithmetic The earliest and most fundamental
branch of mathematics. Arithmetic deals with num-
bers and arithmetic operations on them: addition,
subtraction, multiplication and division. In a more
modern and wider sense, the term arithmetic is also
used as a synonym to number theory, which is the
only part of arithmetic still subject to research activ-
ity.

arithmetic average or mean For a positive inte-
ger n, and given real numbers a1, a2, · · · , an, the mean
is (a1 + · · · + an)/n. Example: The average (mean)
of the set of numbers {1, 3,−2, 5, 8,−4, 6,−5, 12} is

m =
1 + 3− 2 + 5 + 8− 4 + 6− 5 + 12

8
= 3.

arithmetic expression An expression which in-
volves numeric constants and the arithmetic opera-
tions of addition, subtraction, multiplication, divi-
sion, and natural exponents. Example:

72 − [(9− 7)2 + 5 · 2]

62 − 22
.

arithmetic-geometric mean inequality The in-
equality

√
a · b ≤ a+b

2 , which is true for any non-
negative numbers a and b. In the most general case

the inequality is as follows: Let a1, a2, · · · , an be any
non-negative numbers. Then

n
√
a1 · a2 · · · an ≤

a1 + a2 + · · ·+ an
n

arithmetic growth A quantity that grows accord-
ing to the arithmetic progression (see below) rule:
an = a0 + (n− 1)d with some real number d.

arithmetic sequence (progression) A sequence
of real numbers where the difference between two con-
secutive terms is the same. The general term of such
sequence is given by the formula an = a1 + (n− 1)d,
where d is the difference between two consecutive
terms. The sum of the first n terms of arithmetic
sequence is given by the formula

Sn =

n∑
i=1

ai =
a1 + an

2
n.

associated quadratic form For any quadratic
form, the associated quadratic form is the quadratic
form with the same second degree terms and no first
degree terms or constant. For quadratic form in two
variables ax2+2bxy+cy2+dx+ey+f , the associated
quadratic form would be ax2 + 2bxy + cy2. The case
of more variables is defined similarly.

association Any kind of relationship between two
sets of variables or values. For example, in the func-
tion y = 2x + 1 the variables x and y are related by
the given formula and the values of y are associated
with the values of x so that to each x the double of
that value plus one more is associated. Similarly, if
two sets of values forming ordered pairs are put into
a scatterplot, then by looking at the general direc-
tion we might see a positive association (bigger y’s
correspond to bigger x’s) or a negative one (bigger
y’s correspond to smaller x’s).

associative property (1) For addition: for any
numbers a, b, c,complex or real, a+(b+c) = (a+b)+c.
(2) For multiplication: for the same three numbers,
a · (b · c) = (a · b) · c.

astroid Let a circle of radius r roll inside another
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circle of radius 4r. A point on a smaller circle will
leave a trace that is called astroid. Parametric equa-
tions are given by

x = cos3 θ, y = sin3 θ.

Astroid is a special case of the hypocycloid.

asymptote As a rule, a straight line with the prop-
erty that the graph of a given function approaches it.
There are three types of line asymptotes. Vertical
asymptotes have the form x = a, a is real, horizon-
tal asymptotes are of the form y = b, b is real and
slant asymptotes are of the form y = ax + b with
a 6= 0,∞. Vertical asymptotes are characterized by
the fact that limx→a± f(x) = ±∞ and the function f
can never cross that line. For horizontal asymptotes
we have limx→±∞ f(x) = b. Here the function may
or may not cross the asymptote line. For the slant
asymptotes we have limx→∞[f(x)− (ax+ b)] = 0 or
the similar relationship with x→ −∞. Here also, the
function may or may not cross the line at some (pos-
sibly infinitely many) points. Slant asymptotes are
also called oblique.
In addition to line asymptotes also non-linear asymp-
totes are sometimes considered, such as quadratic or
cubic.

asymptote of a hyperbola See hyperbola.

asymptotic curve is a curve always tangent to an
asymptotic direction of the surface. An asymptotic
direction is one in which the normal curvature is zero.

augmented matrix For the system of m equations
with n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm

the m × (n + 1)-matrix of all coefficients with the
addition of constant terms column:

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
am1 am2 . . . amn bm

 .

Augmented matrices are used to solve systems of lin-
ear equations with Gaussian or Gauss-Jordan elimi-
nation methods.

autonomous equation First order differential
equation of the form

d

dt
x(t) = f(x(t)).

These kind of equations describe particles which rate
of motion depends only on their position but not of
time.

autonomous system System of autonomous
equations.

auxiliary equation For differential equations, the
corresponding algebraic equation. For example, the
equation ay′′ + by′ + cy = 0 will have the auxiliary
equation ar2+br+c = 0. Also is called characteristic
equation .

average cost function Let x denote the number
of units of any product by some company. Then C(x)
denotes the cost function. The average cost function
is defined to be the quantity c(x) = C(x)/x. This
function is very important in economics.

average rate of change If a function f(x) is de-
fined on some interval [a, b], then the average rate of
change of that function on any sub-interval [c, d] of
the given interval is the quantity (f(c)−f(d))/(d−c).
This quantity is used to find the instantaneous rate
of change by making the interval [c, d] smaller and
eventually approaching its length to zero.

average value of a function over an interval [a, b]
is defined by the formula

favg =
1

b− a

∫ b

a

f(x)dx.

average velocity For a moving object the average
velocity in the time interval between t1 and t2 is
determined by the formula v = (s2 − s1)/(t2 − t1),
where s1 and s2 are the distances traveled by the
object at the moments t1 and t2 correspondingly.

axiom A statement that is assumed to be true
without proof, and used as a basis for proving other
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statements, less obvious. Also is called postulate.

axis (1) In Cartesian coordinate system, the name
of lines that are used to calculate the position of
a point in two, three or higher dimensional spaces.
See also x-axis, y-axis, z-axis. The x-axis is also
called abscissa and real axis and the y-axis is called
ordinate and imaginary axis.
(2) If a curve or a surface is symmetric with respect
to some line, then this line is called axis of symmetry
or rotation. Example: The y-axis is the axis of
symmetry for the parabola y = x2.
(3) In polar coordinate system the ray coming out
from the pole is called polar axis.

B

back-substitution The last stage of the solution
of systems of linear equations by Gaussian elimina-
tion method. After applying that method to a n× n
system, we arrive to triangular system

x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

x2 + a23x3 + · · ·+ a2nxn = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

xn−1 + an−1nxn = bn−1

xn = bn.

Now, the back substitution consists of the following
steps. First, we have xn = bn. Substituting back into
the previous equation, we get xn−1 = bn−1−an−1nbn.
Continuing this way up, we eventually find all the
values of variables x1, x2, · · · , xn−1, xn, thus com-
pleting solution of the system.

backward phase The second stage (or phase) of
the solution of linear systems by Gaussian elimina-
tion. See back substitution above for details.

bar graphs Also called bar chart. Bar graphs are

one of many ways of visual representation of qualita-
tive (categorical) data. In order to distinguish them
from histograms, a little space is left between bars in
the graph. The picture above shows the production
numbers of some hypothetical company categorized
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by months.

base of exponential function In exponential
function y = ax, where 0 < a < ∞, a 6= 1, and
−∞ < x < ∞, the constant a is called the base and
the variable x is called the exponent

base of logarithm In logarithmic function y =
logb x, where 0 < b <∞, b 6= 1, and 0 < x <∞, the
constant b is called the base of logarithm.

basis Let S = {v1,v2, · · · ,vn} be a subset of
the linear vector space V . S is called a basis for
V , if for any given vector u in V , there exists a
unique collection of scalars c1, c2, · · · , cn, such that
u = c1v1 + c2v2 + · · · + cnvn. These numbers are
called coordinates (or components) relative to the
given basis. A vector space has infinitely many bases
and changing the basis changes also the coordinates
of any given vector. Any basis is necessarily linearly
independent. The number of the vectors in the set S
is called dimension of the space V . Similar definition
works also in cases when the dimension is not finite.
A basis is called orthogonal, if the inner products of
all possible pairs (of different vectors) in that basis
are zeros:

xi · xj = 0, 1 ≤ i, j ≤ n, i 6= j.

If, additionally, xi · xi = 1, 1 ≤ i ≤ n, then the ba-
sis is called orthonormal. Example: The system of
vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) is
a basis in the three dimensional Euclidean space R3

which is also orthonormal.
The basis could be defined and found not only for the
whole space, but also for any subspace of the given
space V . For example, the nullspace of a matrix or
transformation also has a basis because it is a sub-
space of the given space. Also, basis for a complex
vector space is defined similarly with exception of a
necessary change in the part of orthogonality.

bearings Method of measuring angles used primar-
ily in navigation. There are at least two approaches.
First, the angles are measured with respect to verti-
cal axis. In this situation all angles could be made
acute if we measure starting from the ray that comes
out from the origin and either goes up (North direc-
tion) or down (South direction). So, the notation

N52◦E means the angle is 52 degrees measured from
positive y-axis clockwise (to the East) and notation
S47◦W means that the angle is 47 degrees measured
from negative y-axis clockwise (to the West). This
method is used traditionally in marine navigation.
The second method is mostly used in areal naviga-
tion and has only one starting direction (initial side
of the angle), namely, the positive y-axis and the an-
gles measured vary between 0 and 180 degrees.

bell-shaped (Gaussian) curve The curve de-
scribing the normal distribution. Mathematically the
function having that graph is given by the formula

f(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
,

where µ and σ are the mean and standard deviation
of the distribution respectively. The graph of this
distribution looks like the one above.

Bernoulli equations The first order non-linear
equations

y′ + P (x)y = Q(x)yn.

These equations can be transformed into linear equa-
tions

w′

1− n
+ P (x)w = Q(x)

with the substitution w = y1−n, n 6= 0, 1, and solved
using integrating factors.

Bessel equation In differential equations. The se-
ries of second order linear homogeneous equations

x2y′′ + xy′ + (x2 − ν2)y = 0
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with parameter ν. Depending on the value of this
parameter we get Bessel equations of order zero, one-
half, one, two, and, in general, ν. The solutions are
found by the method of series solution and heavily
depend on the value of the parameter. See Bessel
functions below.

Bessel functions These functions arise during the
series solution of the Bessel equations. Depending
on the parameter ν, there could be many different
Bessel functions. Additionally, this functions are cat-
egorized into first kind and second kind. The func-
tions

J0(x) = 1 +

∞∑
n=1

(−1)nx2n

22n(n!)2

and

J1(x) =
x

2

∞∑
n=0

(−1)nx2n

(n+ 1)!n!22n

are called Bessel functions of the first kind of order
zero and one respectively and they are the solutions
of Bessel equations of order zero and one. The Bessel
functions of second kind differ from functions of the
first kind primarily by the presence of a logarithmic
term. For example, the Bessel function of the second
kind and order zero Y0(x) is given by the representa-
tion

2

π

[(
γ + ln

x

2

)
J0(x) +

∞∑
m=1

(−1)m+1Hm

22m(m!)2
x2m

]

where γ is the Euler’s constant and Hm is the mth
partial sum of harmonic series. Now, the general so-
lution of the Bessel equation of order zero is given by
the function

y = c1J0(x) + c2Y0(x)

with arbitrary constants c1, c2.

best approximation An approximation that pro-
vides the closest possible value to a quantity we wish
to approximate. Depending on nature of the ob-
ject, best approximation will be found by a specific
method.

best approximation theorem Let W be a finite-
dimensional subspace of an inner product space V

and let u be some vector in V . Then the vector
projWu is the best approximation from W to u in
the sense that

||u− projWu|| ≤ ||u−w||

for any vector w that is in W .

best fitting line A line that best describes the
paired data collected from sample and presented by
a scatterplot. See least squares regression line.

bias In sampling or statistical experiment. If by
some reason some statistic of collected data from
sampling or experiment has the tendency of system-
atically differing from population parameter, then it
is called biased. The reason of bias could be subjec-
tive (such as bad methodology of data collection) or
objective (some statistics are always biased).

biconditional statement A logical statement of
the form ”If A then B and if B,then A”,or, equiva-
lently, ”A if and only if B”. This statement also can
be written symbolically as A⇔ B. Examples can be:
”A triangle is equilateral if and only if it has three
equal angles”, or ”A number is divisible by two if and
only if it is even”. See also conditional statement.

binary numbers The binary numeral system rep-
resents numeric values using only two symbols, usu-
ally 0 and 1. In this system the sequence of whole
numbers 0,1,2,3,... is represented by the following se-
quence: 0,1,10,11,100,101,110,111,1000,... The use of
this system is crucial in computers and other elec-
tronic devices because it allows to represent all real
numbers (or their approximations) with the help of
signal-no signal sequences. See also decimal numbers.

binary operation An operation involving two
mathematical objects. Examples of binary opera-
tions are addition and multiplication of numbers,
functions, matrices, etc.

binomial A polynomial of one or more variables
that has exactly two terms, called monomials. Ex-
amples are 2x+ 1, 3x3 + 4x2, 2x4y3 + 5xy2z.

binomial coefficients In binomial expansion (see
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below), the numeric coefficients(
n

k

)
=

n!

k!(n− k)!
,

where n ≥ 1 is an integer and 0 ≤ k ≤ n is another
integer.

binomial distribution Suppose we are conduct-
ing some experiment and the following conditions are
satisfies:
1) There are n repeated trials every time;
2) Each trial has exactly two possible outcomes,
called success (S) and failure (F);
3) Probability of S is p and probability of F is
q = 1− p;
4) The random variable x is the number of successes
in n trials and takes values from 0 to n.
In this case it is said that we have binomial setting.
Binomial distribution is the distribution of probabil-
ities in this setting and is given by the formula

P (x = k) =

(
n

k

)
pkqn−k,

where
(
n
k

)
= n!/k!(n − k)! is the binomial coeffi-

cient (see above). Binomial distributions serve as a
good approximation for normal distributions. The
mean and standard deviation of any binomial distri-
bution could be calculated by very simple formulas:
µ = np, σ =

√
npq respectively.

binomial expansion Also called Binomial Theo-
rem. For any given real quantities x and y (fixed or
variable) and any natural number n, the following
expansion holds:

(x+ y)n =

(
n

0

)
xny0 +

(
n

1

)
xn−1y1 +

(
n

2

)
xn−2y2

+ · · ·+
(

n

n− 1

)
x1yn−1 +

(
n

n

)
x0yn

and
(
n
k

)
, 0 ≤ k ≤ n are the binomial coefficients.

binomial series For a real number α,−∞ < α <
∞, the series

(1 + x)α =

∞∑
n=0

(
α

n

)
xn,

where(
α

n

)
= α(α− 1)(α− 2) · · · (α− (n− 1))/n!

is the proper generalization of binomial coefficients
(see also combinations) to the case of non-integer
values of α. The series converges for all |x| < 1.
In the case when α is a positive integer, the series
reduces to finite binomial expansion.

bisector of an angle A ray, coming out of the
vertex of an angle, that divides the given angle
into two equal parts. In a triangle, the bisector
of any angle is a segment coming out from the
vertex, dividing the angle into equal parts. Similarly,
bisectors could be defined for angles of any polygon.

block of a matrix Let A be some n ×m-matrix.
We can divide this matrix into parts by separating
certain rows and columns. Each part in this case is
called a block. Example: The matrix

A =

 1 −1 −2
−1 3 4
5 −2 0


could be divided into four blocks as follows

B1 = (1) B2 = (−1− 2) B3 =

(
−1
5

)

B4 =

(
3 4
−2 0

)
.
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This division is not unique and depends on what we
need to do with this matrix. Operations done with
blocks of the matrix are called block manipulations.

Boolean algebra The system of rules of opera-
tions with logical statements. This algebra involves
Boolean variables, that take True and False values
(or 1 and 0) and operations of conjunction (”and”),
disjunction (”or”) and negation (”not”). Named af-
ter George Boole.

boundary For any set in the Euclidean space
Rn, n ≥ 1, the boundary is the set of all boundary
points (see below). Examples: (1) For the interval
[a, b] the boundary consists of two points a and b. (2)
For the ball x2 + y2 + z2 ≤ 1, the boundary is the
sphere x2 + y2 + z2 = 1.

boundary conditions (1) For ordinary differen-
tial equations. If the equation is given on some finite
interval [a, b], then the boundary consists of only two
points a and b and the conditions are given on both
points. The most general conditions could be written
as α1y(0) + α2y

′(0) = 0 and β1y(1) + β2y(1) = 0.
(2) For partial differential equations. If the equation
is given on some region D, then boundary is either
some curve or a surface. Accordingly, the boundary
conditions would be given on that boundary.

boundary curve A curve that makes the bound-
ary of some plane region.

boundary point For a set D in the Euclidean
space Rn, n ≥ 1, a point a ∈ D is a boundary point,
if any ball with center at that point contains both
points in D and outside of D. In case n = 1 the ball
should be substituted by interval and in case n = 2
it should be a circle. Examples: (1) For the interval
[a, b] each of the endpoints is a boundary point. (2)
For the circle x2 + y2 ≤ 1 the point (1, 0) is a bound-
ary point.

boundary value problem For ordinary differ-
ential equations. A differential equation along with
boundary conditions for solutions. To solve a bound-
ary value problem means to find a solution to the
given equation that also satisfies conditions on the
boundary. The boundary conditions are chosen to
assure that the solution is unique. Example: The

equation

p(x)y′′ − q(x)y + λr(x)y = 0

on the interval [0, 1] with be conditions
α1y(0) + α2y

′(0) = 0 and β1y(1) + β2y(1) = 0
is called Sturm-Loiville boundary value problem.

bounded function A function f , defined on some
interval I (finite or infinite), is bounded, if there
exists a number M > 0, such that |f(x)| ≤M for all
values x ∈ I.

bounded sequence A sequence {an} of real or
complex numbers is bounded if there exists a number
M > 0 such that |an| ≤M for all values of n ≥ 1.

bounded set A subset S of the real line R is
bounded, if there is a positive number M > 0 such
that all elements x ∈ S satisfy |x| < M . If the set S
is a subset of Rn, then similar definition applies with
the |x| understood as the length of the point x ∈ Rn.

boxplot One of the tools of visualizing quantitative
data. To construct a boxplot it is necessary first
to organize the values in increasing order. Next,
finding the median of these values we indicate the
center. On the last step we find the two medians
of these two halves. These points are the first and
third quartiles of the data set. Along with the
minimum and maximum values they make-up the
five point summary. Now, the boxplot consists of a
box where these five values are indicated. The form
of the boxplot is not standard and could be made
both horizontal or vertical. Picture shows one of the
possible forms.

braces Or curly brackets.The symbols { }. One
of the grouping symbols along with parentheses and
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brackets. Primarily is used to separate certain num-
bers and variables to indicate operations to be done
first.

brachistochrone For given two points on the
plane, brachistochrone is the curve of quickest de-
scent between these points. This curve is not the
shortest (which is the straight line) and turns out to
be a cycloid.

branches of hyperbola Any non-degenerate
hyperbola consists of two separate curves, called
branches.

branches of the tangent The graph of the tan-
gent function consists of infinitely many identical
curves, called its branches. These branches are sep-
arated from each other by the vertical asymptotes
x = π

2 + πn, n is an arbitrary integer.

brackets The symbols [ ]. One of the grouping
symbols along with parentheses and braces. Primar-
ily is used to separate certain numbers and variables
to indicate operations to be done first.

C

calculus One of the major branches of mathe-
matics, along with algebra and geometry. Calculus
itself consists of two main branches: differential and
integral calculus. These two branches are related by
the Fundamental Theorem of Calculus.

Cantor set Also called the Cantor ternary
set.Take the closed interval [0, 1] and remove the
middle open interval (1/3, 2/3) from if. The result
will be the union of two closed intervals [0, 1/3]
and [2/3, 1]. From each of these intervals we again
remove their middle third open intervals (1/9, 2/9)
and (7/9, 8/9) and get the union of four closed
intervals [0, 1/9], [2/9, 1/3], [2/3, 7/9], [8/9, 1]. If
we continue this process indefinitely, the result will
be a closed set called Cantor set. This set has many
remarkable properties. In particular, it is an infinite
set of measure zero and it is a perfect set in the
sense that for any point in the set there is an infinite
sequence of points from that set that approach that
point.

cardioid Any of the plane curves given in polar
coordinates by the equations

r = a(1± cos θ)

or
r = a(1± sin θ
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Cardioids are special cases of limaçons.

Cartesian coordinate system (1) For points
on a plane, also called the rectangular coordinate
system. A method of representing points on a plane
as ordered pairs of numbers and vice versa. To do
so, a pair of perpendicular lines (called axes) are
drawn, that intersect at a point called the origin.
The horizontal line is called the x-axis and the
vertical one – the y-axis. Now, coordinates of any
point are determined by drawing perpendicular lines
from a point until they reach the axes. The points
of these intersections (which represent numbers
on corresponding number lines) make up a pair of
numbers, called the ordered pair. Conversely, if we
have a pair of numbers, then the point corresponding
to it could be found by putting these numbers on
appropriate axes and drawing two perpendiculars,
until they meet at some point.

(2) For points in three dimensional space. To rep-
resent points in the space one additional coordinate
axis (called the z-axis) is necessary. This allows to
represent any point as an ordered triple, just as in
the case of the plane. Similarly, any ordered triple
will represent a point in the space.

(3) The system works also for spaces of any dimen-
sion n ≥ 2 and even for infinite dimensional spaces.
The importance of the Cartesian coordinate system is
that it allows to connect geometry with algebra, cal-
culus, and other branches of mathematics. Named
after René Descartes.

Cartesian plane A plane, equipped with the
Cartesian coordinate system.

Cartesian product For any two given sets A and
B (of arbitrary nature) the set of all possible ordered
pairs (x, y), where x is an element of A and y is an
element of B. The notation is A×B. The Cartesian
product can be defined for any number of sets and
even for infinitely many sets.

Cauchy’s mean value theorem Let the functions
f(x) and g(x) be continuous on a closed interval [a, b]
and be differentiable on the open interval (a, b). Then
there exists a point c, a < c < b, such that

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)
.

This theorem is the generalization of the Mean value
theorem.

Cauchy-Euler equation Also called Euler equa-
tion. The equation

x2u′′ + bxu′ + cu = 0,

where b and c are real numbers. The solutions of
this equation depend on the solutions of the alge-
braic equation F (r) = r(r − 1) + ar + b = 0.
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(1) If the quadratic equation has two real solutions
r1 6= r2 then the general solution of the Cauchy-Euler
equation is y = c1|x|r1 + c2|x|r2 .
(2) If the quadratic equation has the a repeated so-
lution r then the general solution is given by the for-
mula y = c1|x|r + c2|x|r ln |x|.
(3) In the case of two complex solutions r = λ ± iµ,
the solution of the differential equation comes in the
form

y = |x|λ[c1 cos(µ ln |x|) + c2 sin(µ ln |x|)].

Cauchy-Schwarz inequality For any two non-
zero sequences of real numbers {ak}nk=1 and {bk}nk=1,
the inequality

(

n∑
k=1

akbk)2 ≤
n∑
k=1

a2k

n∑
k=1

b2k

holds. The equality holds if and only if ak = cbk for
some constant c. The same inequality is true even in
the case of infinite sequences.

Cayley-Hamilton theorem Let A be a square
matrix and let

c0 + c1λ+ c2λ
2 + · · ·+ cn−1λ

n−1 + λn = 0

be its characteristic equation. Then the matrix A
satisfies the equation

c0I + c1A+ c2A
2 + · · ·+ cn−1A

n−1 +An = 0,

where I is the identity matrix.

center of a circle The point that has equal dis-
tance from each point of the circle.

center of the distribution A somewhat intuitive
notion that is not exactly defined and may mean dif-
ferent thing for different distributions. Most com-
monly the center refers to the mean of the distribu-
tion µ.

central angle An angle, that is formed by two radii
of a circle.

central limit theorem The most fundamental re-
sult in Statistics. Informally, it states that if we form
a sampling distribution from a large population then

the result will be another distribution that is approx-
imately normally distributed and this new distribu-
tion has the same mean as the original distribution.
The standard deviations are also related. More pre-
cisely:
Suppose we have some distribution with the mean µ
and standard deviation σ. If we form a new distribu-
tion from the means of simple random samples of size
n, then this distribution will be close to a normal dis-
tribution with mean µ and standard deviation σ/n.
The larger n is, the better is the approximation.

centroid Let R denote a plate with uniform mass
distribution ρ. The center of mass of this plate is
called centroid of R. There are different formulas for
locating the coordinates of the centroid. If the region
R is bounded by the function f(x) ≥ 0 and the lines
y = 0, x = a, x = b, then the coordinates of the
centroid are given by the formulas

x =
1

A

∫ b

a

xf(x)dx, y =
1

2A

∫ b

a

[f(x)]2dx,

where A =
∫ b
a
f(x)dx is the area of the region.

In the case when R is bounded by two functions
f(x) ≥ g(x), the formulas should be adjusted and
will include f(x) − g(x) in the formula for x and
[f(x)]2 − [g(x)]2 in the formula for y.

chain rule The formula for calculating the deriva-
tive of a composite function. (1) For functions of one
variable. Let F (x) = f(g(x)) and both f(x) and g(x)
are differentiable. Then

F ′(x) = f ′(g(x)) · g′(x).

(2) For functions of several variables: Let z =
z(x1, · · · , xm) be a differentiable function of m
variables and each of these variables are them-
selves differentiable functions of n variables: x1 =
x1(t1, · · · , tn), · · · , xm = xm(t1, · · · , tn). Then the fol-
lowing formulas for the partial derivatives hold:

∂z

∂t1
=

∂z

∂x1

∂x1
∂t1

+ · · ·+ ∂z

∂xm

∂xm
∂t1

· · · · · · · · · · · · · · ·
∂z

∂tn
=

∂z

∂x1

∂x1
∂tn

+ · · ·+ ∂z

∂xm

∂xm
∂tn



20

change of base For logarithmic function: If a and
b are both positive real numbers not equal to 1, and
x > 0, then

loga x =
logb x

logb a
.

change of variable A method used in many situ-
ations to solve certain types of equations or evaluate
definite or indefinite integrals. Example: To solve the
equation x1/2 − 5x1/4 + 6 = 0 we make a change of
variable y = x1/4 to translate to the quadratic equa-
tion y2− 5y+ 6 = 0 which has the solutions y = 2, 3.
Returning to the original variable x we get x1/4 = 2, 3
or x = 16, 81.
For examples with integration see the entry substitu-
tion method.

characteristic equation (1) The equation p(x) =
0, where p is the characteristic polynomial of a given
square matrix. If the matrix has the size n× n, then
the polynomial has degree n and, by the Fundamental
Theorem of Algebra, has exactly n roots (if counted
with multiplicities). The roots of the equation may
be both real or complex and some of them might
be repeated. See also eigenvalues, eigenvectors, and
eigenspace.
(2) For a linear homogeneous differential equation

a0y
(n) + a1y

(n−1) + · · ·+ cn−1y
′ + cny = 0

the corresponding polynomial equation

a0r
n + a1r

n−1 + · · ·+ cn−1r + cn = 0.

The solutions of this equation are called characteristic
roots. For the importance and the use of these roots
see the article linear ordinary differential equations.

characteristic polynomial (1) Let A be an n ×
n matrix and I is the identity matrix of the same
size. The determinant of the matrix A − λI is a
polynomial, called the characteristic polynomial of
the matrix A. This polynomial has degree n and, by
the Fundamental Theorem of Algebra, has exactly n
roots (if counted with multiplicities). This roots are

called the eigenvalues of A. Example: For the matrix

A =

 2 0 0
1 3 0
0 −4 1


we have

det(A− λI) =

∣∣∣∣∣∣
2− λ 0 0

1 3− λ 0
0 −4 1− λ

∣∣∣∣∣∣
= (2− λ)(3− λ)(1− λ),

which has three real and distinct roots: 1,2,3. See
also eigenvalues and eigenvectors.
(2) For a linear homogeneous differential equation

a0y
(n) + a1y

(n−1) + · · ·+ cn−1y
′ + cny = 0

the corresponding polynomial

p(r) = a0r
n + a1r

n−1 + · · ·+ cn−1r + cn

of degree n with respect to the variable r is its char-
acteristic polynomial. The roots (zeros) of the poly-
nomial are the characteristic roots of the polynomial.

Chebyshev equation The differential equation

(1− x2)y′′ − xy′ + αy = 0.

Solutions of this equation when α is a non-negative
integer n, are called Chebyshev polynomials. These
polynomials could be written in many different forms.
The simplest and most used form is

Tn(x) =
(x+

√
x2 − 1)n + (x+

√
x2 − 1)−n

2
.

chi-square distribution The distribution of
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variance. There are multiple definitions for this dis-
tribution and the following is one of the simplest:

χ2 =
(n− 1)s2

σ2
,

where n is the sample size, s2 is the sample variance
and σ2 is the population variance. Because variance
is positive the curve of the distribution is always on
the right side. As the graph shows, the distribution
becomes more symmetric with the increasing size of
the sample.

chord For any given curve, a straight line segment,
that connects any two points on the curve. Most
commonly is used for the circle.

circle A plane geometric figure with the property
that there exists a point (called center of the circle)
and a positive number r (called the radius), such
that the distance from each point of that figure to
the center is equal to r.

circular cylinder A cylinder with a circle base.

circumference The perimeter of a circle.

Clairaut’s theorem Also known as the theorem
of the change of order of partial differentiation. If
the function f(x1, x2, . . . , xn) has continuous second
partial derivatives at some point (a1, a2, ..., an) in its
domain, then

∂2f

∂xi∂xj
(a1, a2, ..., an) =

∂2f

∂xj∂xi
(a1, a2, ..., an)

for any combination of indices 1 ≤ i, j ≤ n.

closed curve A curve that has no end points. If
a plane curve is given by the parametric equations
x = x(t), y = y(t), t ∈ [a, b], then the curve is closed
if x(a) = x(b) and y(a) = y(b).

closed interval Intervals of the form [a, b], where
both end-points are finite and included.

closed set A set that contains all of its boundary
points. For example, the interval [0, 1] is a closed
set because it contains both of its boundary points 0
and 1, while the interval (0, 1) is not closed. The set
{(x, y)|x2 + y2 ≤ 1} is a closed set on the plane but
the set {(x, y)|x2+y2 < 1} is not a closed set because
it does not contain its boundary.

closed surface In the simplest form, a closed sur-
face is the boundary of a bounded solid domain. The
general definition, given in advanced calculus courses,
requires notions from set theory and topology.

closed under A set of numbers (or, more gener-
ally, some objects) is closed under certain operation,
if the result of that operation also belongs to that
set. Examples. (1) The set of all integers is closed
under both operations of addition and multiplication,
because the result is also an integer. (2) The set of
real numbers is closed under addition, subtraction,
multiplication, and division (except by zero), but it
is not closed under the operation of square root ex-
traction. (3) The set of all square matrices is closed
under addition, scalar multiplication and also matrix
multiplication.

coefficient A word most commonly used to indi-
cate the non-variable factor of a term of a polyno-
mial. See coefficients of a polynomial. This term
is also used to describe the numeric components in
functions other than polynomials.

coefficient matrix For a system of linear equa-
tions

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·

am1x1 + am2x2 + · · ·+ amnxn = bm
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the m × n matrix that consists of all coefficients of
the system (but not the constant parts on the right
sides): 

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 .

When a column of the constant terms is attached,
the matrix is called augmented.

coefficients of a polynomial In the polynomial
of arbitrary degree

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

the constants a0, a1, · · · , an.

coefficients of power series In the power series

∞∑
n=0

an(x− c)n

the numeric constants an, n = 0, 1, 2, 3 · · ·.

cofactor For a given n × n matrix A, the (i, j)th
cofactor is the determinant of the (n−1)×(n−1) ma-
trix obtained by deleting the ith row and jth column
of A, multiplied by (−1)i+j . Example: If

A =

−4 4 1
0 −1 3
2 5 2


then the cofactor corresponding to the element a23
(which is 3) is

(−1)2+3 det

(
−4 4
2 5

)
= (−1)(−20− 8) = 28.

See also minors of a matrix.

cofactor matrix Another name for the adjoint
matrix.

cofunction The common name of trigonometric
functions cosx, cotx, cscx.

cofunction identities In trigonometry, the iden-
tities

cos(
π

2
− θ) = sin θ, sin(

π

2
− θ) = cos θ;

cot(
π

2
− θ) = tan θ, tan(

π

2
− θ) = cot θ;

csc(
π

2
− θ) = sec θ, sec(

π

2
− θ) = csc θ,

which are true for any real values of θ where the func-
tions are defined.

column matrix A matrix, that consists of one col-
umn, or an m× 1 matrix. It is the same as a vector,
written in column form. Example: 3

−4
1

 .

column space Let A be an m × n matrix. The
subspace of the space Rm that is spanned by the
column-vectors of that matrix is called the column
space of A.

column vector A vector written in column form.
The same as column matrix above.

combination For the given set S of n elements,
combination of k elements is a subset of S, that con-
tains exactly k elements. At least one element should
be different and two sets with the same elements
are considered the same. For example, the subsets
{1, 2, 3} and {2, 1, 3} are the same. The number of
combinations of k elements out of n is given by the
formula

Cnk =

(
n

k

)
=

n!

k!(n− k)!
,

where 0 ≤ k ≤ n. See also binomial coefficients and
permutation.

common denominator If two or more fractions
have the same denominator, then that denominator
is called the common denominator (of the fractions).
If the denominators are different, the fractions could
be changed to an equivalent form with a common
denominator. See least common denominator for de-
tails.

common factors In any factorization of two or
more natural numbers, any factors that are the same
for all of these numbers. Example: The numbers
24 = 23 · 3 and 30 = 2 · 3 · 5 have three common fac-
tors, 2, 3, and 6.
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common logarithms Logarithmic function with
base 10. The base of common logarithms is often
not written but is understood: log x = log10 x.

common multiple For two or more integers, any
integer that is divisible by all of them. The num-
ber 30 is a common multiple of 10 and 6, because
30 = 10 · 3 and 30 = 6 · 5.

commutative property for addition For any
given real or complex numbers a and b, a+ b = b+a,
or, the order of the addends does not change the sum.

commutative property for multiplication For
any given real or complex numbers a and b, a·b = b·a,
or, the order of the factors does not change the prod-
uct.

commuting matrices Two square matrices A and
B such that A ·B = B ·A.

comparison properties of the integral For in-
tegrable functions f(x) and g(x) of one real variable
defined on [a, b]:

(1) If f(x) ≥ 0 then
∫ b
a
f(x)dx ≥ 0

(2) If f(x) ≥ g(x) then
∫ b
a
f(x)dx ≥

∫ b
a
g(x)dx.

(3) If m ≤ f(x) ≤ M , then m(b − a) ≤
∫ b
a
f(x)dx ≤

M(b− a).

comparison theorem for integrals Let f and g
be two functions defined on [a,∞), with the property
f(x) ≥ g(x) for x ≥ a.
(1) If

∫∞
a
f(x)dx is convergent, then

∫∞
a
g(x)dx is

also convergent.
(2) If

∫∞
a
g(x)dx is divergent, then

∫∞
a
f(x)dx is also

divergent.

comparison test for series Let {an} and {bn} be
two numeric sequences.
(1) If 0 ≤ an ≤ bn for all n and

∑∞
n=1 bn is conver-

gent, then
∑∞
n=1 an is convergent.

(2) If an ≥ bn ≥ 0 for all n and
∑∞
n=1 bn is divergent,

then
∑∞
n=1 an is divergent.

complement of a set Let S be a space of sets or
a set of some elements and assume A is an element of
that space. The complement of A is the set Ā, that
has no intersection with A (A ∩ Ā = ∅), and their
union ”fills” the space, A ∪ Ā = S.

complementary angles Two angles are comple-
mentary, if the sum of their measures is 90◦ (in de-
gree measure) or π/2 (in radian measure).

completing the square If a quadratic trinomial
is not a perfect square, it is still possible to represent
it as a sum of a perfect square and some constant.
This procedure is called completing the square. If
the trinomial is ax2 + bx+ c, then we isolate the first
two terms and write

ax2 + bx+ c = a

(
x2 +

b

a
x

)
+ c

and notice that in order to make the expression inside
the parenthesis a perfect square we are missing the
square of half of the linear term’s coefficient. Adding
and subtracting that number we get

a

(
x2 +

b

a
x+

b2

4a2
− b2

4a2

)
+ c

= a

(
x2 +

b

a
x+

b2

4a2

)
− b2

4a
+ c

= a

(
x+

b

2a

)2

− b2

4a
+ c.

Examples:
(1) x2− 6x+ 7 = (x2− 6x+ 9)− 9 + 7 = (x− 3)2− 2.

(2) 3x2 + 7x− 5 = 3(x2 + 7
3x)− 5 = 3(x2 + 7

3x+ 49
36 −

49
36 )− 5 = 3(x2 + 7

3x+ 49
36 )− 49

12 − 5 = 3(x+ 7
6 )2− 109

12 .

complex conjugates Complex numbers with the
same real parts and opposite imaginary parts: a+ ib
and a−ib. The complex conjugate of the number z is
denoted by z. A very important property of complex
conjugates is that their product is always a positive
number or zero (if the number is zero itself):

(a+ ib)(a− ib) = a2 − i2b2 = a2 + b2 ≥ 0.

This fact is used in the process of the division of two
complex numbers.

complex exponents The complex exponent for
the base e is defined by the use of Euler’s formula. If
z = x+ iy is some complex number, then

ez = ex(cos y + i sin y).
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For any other positive base a 6= 1 the complex ex-
ponent could be defined similarly with the use of the
identity a = eln a.

complex fraction A fraction, where the numera-
tor, or denominator or both are fractions themselves.
Examples:

2
3
7
13

,

x
2x+ 1
x2 − 1
x− 5

.

complex numbers Numbers of the form z = x +
iy, where x and y are real numbers and i =

√
−1, is

the imaginary unit. x is called the real part of the
complex number and y is the imaginary part. Two
complex numbers are equal, if their real and imagi-
nary parts are identical: a+ ib = c+ id if and only if
a = c and b = d. Each complex number can be rep-
resented graphically as a point on the plane, where
the real part is identified with the x-coordinate and
the imaginary part with the y-coordinate.
Complex numbers also have a trigonometric repre-
sentation of the form z = r(cos θ + i sin θ), where

r = |z| =
√
x2 + y2 is the modulus of the number

and the angle θ, (called the argument of z) is deter-
mined from the equation tan θ = y/x.
For operations with complex numbers see addition
and subtraction of complex numbers, division of com-
plex numbers, multiplication of complex numbers,
DeMoivre’s theorem.

complex plane A plane equivalent to the Carte-
sian plane with one significant difference: the points
on the plane are not viewed as ordered pairs (x, y),
but rather as points with real and imaginary parts
coinciding with these same values x, y. Hence, arith-
metic operations can be done with the points on the
complex plane according to the rules of operations
with complex numbers.

component function If r is a vector-function in
the three dimensional space, then it could be written
in the form

r(t) = (f(t), g(t), h(t)).

The functions f, g, h are called component func-
tions. The same notion is valid for two dimensional

vector-functions also.

components of a vector Let v be some vec-
tor in a vector space V . Then it could be writ-
ten in its component form v = (v1, v2, · · · , vn) and
the scalars v1, v2, · · · , vn are the components of this
vector. Components depend on the basis of the
space V and vary with change of basis. Exam-
ple: the vector v = (2, 3) in the standard basis
e1 = (1, 0), e2 = (0, 1) of R2, in the nonstandard
basis e′1 = (−1, 0), e′2 = (0,−1) will have compo-
nents (−2,−3).

composite function See composition of functions.

composite number A natural number, that could
be written as a product of two other natural numbers
different from 1 or the number itself. If it is not pos-
sible, the number is called prime.

composition of functions (1) For functions of
one variable. Let f(x) and g(x) be two functions
and assume that the range of g is contained in the
domain of f . Then the composition of f with g
is defined to be the function h(x) = f(g(x)). The
notation h = f ◦ g is commonly used. The op-
eration of composition is not commutative. Exam-
ple: Let f(x) = x2 + 1 and g(x) = 2x − 1. Then
(f ◦ g)(x) = 4x2 − 4x+ 1 and (g ◦ f)(x) = 2x2 + 1.
(2) For functions of several variables. If
f = f(x1, · · · , xm) and there are m functions
gk(x1, · · · , xn), 1 ≤ k ≤ m, of n variables, then the
composition function can be defined by the formula

h(x1, · · · , xn) =

f(g1(x1, · · · , xn), · · · , gm(x1, · · · , xn)).

In this definition we have to assume also that the
combined ranges of the functions gk are in the do-
main of f . In the several variable case the composi-
tion is also not commutative.

composition of linear transformations Let T1 :
V1 → V2 be a linear transformation between two lin-
ear vector spaces V1 and V2. Assume also, that an-
other linear transformation T2 between V2 and some
other linear vector space V3 is defined in such a way,
that its domain is contained in the range of the trans-
formation T1. Then the composition transformation
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T (v) = T2(T1(v)) = (T2 ◦ T1)(v) is a transforma-
tion between the spaces V1 and V3. The composition
operation is not commutative: T1 ◦ T2 6= T2 ◦ T1 in
general.

compound interest When a given amount of
money is invested and the interest is paid not only on
the principal amount but also on the interest earned
on the principal, it is called compound interest. If
the principal amount is denoted by P , the interest
rate by r and interest payments are made n times a
year, then the formula for the amount A after t years
is

A = P
(

1 +
r

n

)nt
.

See also continuously compounded interest.

concave function A differentiable function on
some interval is concave down if its derivative is a de-
creasing function. Geometrically this property means
that the tangent line to the graph of the function
at any point is above the graph. Similarly, a dif-
ferentiable function on some interval is concave up
if its derivative is an increasing function. Geomet-
rically this property means that the tangent line to
the graph of the function at any point is below the
graph. Concave up functions are also called convex.

concavity The property of being concave.

concavity test Let f(x) be a twice differentiable
function on some interval I. (1) If f ′(x) > 0 for all
values of x on the interval, then the function is con-
cave up. (2) If f ′(x) < 0 for all values of x on the
interval, then the function is concave down.

conditional probability The probability of some
event A under the assumption that event B happens
too. The notation is P (A|B). If two events A,B
are not mutually exclusive, then the probability that
both events happen is given by the general multipli-
cation formula

P (A ∩B) = P (A)P (B|A).

conditional statement A logical statement of
the form ”If A, then B”, written also in the short
form A ⇒ B. Examples include: ”If x is real, then

x2 is positive”, ”If a function is differentiable, then
it is continuous”. To each conditional statement
A⇒ B, there exist three other statements.
(1) Converse: B ⇒ A, meaning ”If B, then A”. If
the direct statement is true, the converse may or
may not be true.
(2) Inverse: not A ⇒ not B, meaning ”If A is not
true, then B is not true”. As in the case of converse,
the inverse may or may not be true.
(3) Contrapositive: not B ⇒ not A, meaning ”If
B is not true, then A is not true”. Direct and
contrapositive statements are equivalent in the sense
that either they both are true or both are false.
See also biconditional statement, logical contraposi-
tive.

conditionally convergent series A series that
converges but the series formed by the absolute

values of its terms does not. The series
∑∞
n=1

(−1)n
n

is conditionally convergent because the series formed
by its absolute values is the divergent harmonic series∑∞
n=1 1/n. If a series is conditionally convergent,

then its terms could be rearranged so that the sum
equals any given number.

cone A three dimensional geometric object gener-
ated by a line (called the generator) rotating about a
fixed point on the line called the apex. Both the sur-
face and the solid generated this way are called cone.
The picture above shows one half of a right circular
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cone.
confidence interval In statistics. An interval of
real values where we expect to have the ”majority”
of values of some distribution concentrated. The two
endpoints of that interval are given by the expres-
sion Estimate±Margin of Error. For example, for
the distribution of proportions, this interval could be
given by the expression

p̂± z∗SE(p̂),

where p̂ is the estimated proportion of the sample
data, SE(p̂) is the standard error of that sample
data, and z∗ is the critical value corresponding to
the given confidence level. The length of the interval
depends on the size of the data set and on the desired
confidence level.

confidence level A percentage we chose to be con-
fident of the accuracy of statistical estimates that
come from sample data. The most common values
are 90%, 95%, and 99%. The confidence level is as-
sociated with critical values.

congruence An equivalence relation between two
or more sets. Geometric figures are called congruent
if one figure (plane or solid) could be moved and/or
rotated and/or reflected to coincide with the other
figure. Congruence is different from equality in the
sense that these two figures are not the same because
originally they occupied different places on the plane
or in space while equal figures are supposed to have
all components of the same size and occupy the same
space.

conic section The result of cutting a double cone
by a plane. Depending on the position of the plane
the result could be a circle, ellipse, parabola, hyper-
bola or a degenerate conic section: a point, a pair of
intersecting lines, or the empty set. An alternative
geometric definition could be given using eccentric-
ity.
Algebraically, any conic section could be described
as a solution of a quadratic equation in two vari-
ables: Ax2 +Bxy + Cy2 +Dx+Ey + F = 0, where
A, B, C, D, E, F are real constants. See the en-
tries ellipse, hyperbola, parabola for the details and
additional information regarding foci, directrix, axes

etc.

conjugates The expressions a + b and a − b are
called conjugates or conjugate pairs. The term most
often refers to complex conjugates. It is also used for
expressions of the form

√
a +
√
b and

√
a −
√
b. Us-

ing these conjugates is important when rationalizing
denominators containing these expressions.

conjugate axis See hyperbola.

connected region If any two points of a region
can be connected by a path (curve) that lies com-
pletely inside that region, then the region is called
connected.

conservative vector field A vector field F is
called conservative, if there exists a scalar function
f such that its gradient vector field coincides with
F : F=5f .

consistent linear system A system of equations
which has at least one solution. When the system
has no solution, it is called inconsistent.

constant A quantity that does not change, usually
some type of number.

constant multiple rule See differentiation rules.

constraint A term used as a synonym of restric-
tion. The constraints could be on an independent
variable as well as on a function itself. Example:
Find the maximum value of the function f(x, y) =
2x2 − 3xy + y2 under the constraint x2 + y2 = 1.

continued fraction An expression of the form

a0 +
b1

a1 +
b2

a2 + · · ·

.

Continued fraction might be finite or continue indef-
initely.

continued fraction expansion Representation of
a number or a function as a finite or infinite continued
fraction. Example:

√
2 = 1 +

1

2 +
1

2 + · · ·

.
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continuity of a function The function f(x), de-
fined on some interval [a, b] is continuous at a point
c ∈ (a, b), if

lim
x→c

f(x) = f(c).

continuity on an interval The function is contin-
uous on an interval, if it is continuous at each point
of that interval. If the function is defined on a closed
interval [a, b] then for the continuity at the end-points
a and b see the entries continuity from the right and
continuity from the left respectively below.

continuity from the left The function f(x) is
continuous from the left at some point c, if at that
point the left-hand limit exists and is equal to the
value of the function at that point: limx→c− f(x) =
f(c).

continuity from the right The function f(x) is
continuous from the right at some point c, if at that
point the right-hand limit exists and is equal to the
value of the function at that point: limx→c+ f(x) =
f(c).

continuous function See continuity of a function.

continuously compounded interest When a
given amount of money is invested and the interest is
paid not only on principal amount but also on interest
earned on principal, and the number of payments is
unlimited, then it is called continuously compounded
interest. If the principal amount is P and the interest
rate is r, then the amount of money after t years is
given by the formula A = Pert. See also compound
interest.

contraction operator Or contraction transforma-
tion. An operator applied to a vector does not change
its direction but makes its magnitude smaller. The
operator is given by the formula Tx = kx, where
0 ≤ k ≤ 1. In the case k ≥ 1 the transformation is
called a dilation operator. For a more general case
when not only the magnitude but also the direction
is changed, see expansion operator.

contrapositive See conditional statement.

convenience sampling A type of sampling when
the samples are taken based on the convenience of the

person taking them. This method is not considered
scientifically reliable or unbiased.

convergence For specific definitions see conver-
gent integrals, convergent sequences, convergent se-
ries. See also absolutely convergent series, condition-
ally convergent series.

convergent integral A definite integral with finite
value. For proper integrals this means that the Rie-
mann sums have finite limit. The same applies also
to improper integrals.

convergent sequence A numeric sequence that
approaches a finite value. The formal definition is:
Let {an}∞n=1 be a sequence of (real or complex) num-
bers. The sequence converges to some number A, if
for any given ε > 0 there exists an N > 0, such that
|an − A| < ε whenever n > N . In an equivalent no-
tation, limn→∞ an = A.
Example: The sequence {1 + 1/n} converges to 1 as
n→∞.

convergent series A numeric series is convergent
if the partial sums of that series Sn =

∑n
k=1 ak form a

convergent sequence. More precisely, if for any given
ε > 0 there exists a number N such that |Sn−L| < ε
for any n > N , we say that the series converges to L.
Example: The series

∞∑
n=1

1

np

is convergent for any value p > 1. The same exact
definition is valid also for functional series, such as
power series or Fourier series.

converging solutions A term commonly used to
describe approximate solutions that have the prop-
erty of approaching the exact solution during a cer-
tain limiting process. As an example see Newton’s
method for conditions when approximate solutions
approach exact solution.

converse See conditional statement.

convex function A differentiable function on some
interval is convex, if its derivative is an increasing
function. Geometrically this property means that the
tangent line to the graph of the function at every
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point is always below the graph. Convex functions
also are called concave up.

convex set A set in Euclidean space with the prop-
erty that for any two points points in that set, the
line connecting those points lies completely in the set.

convolution integral For two functions defined on
the real axis R, the formal integral

(f ∗ g)(x) =

∫ ∞
−∞

f(t)g(x− t)dt.

Convolution is commutative in the sense that f ∗ g =
g ∗ f . Another important property of convolution
is that the Laplace transform translates convolu-
tion into multiplication: Let Lf(x) and Lg(x) be
Laplace transforms of f and g respectively. Then
L(f ∗ g)(x) = Lf(x) · Lg(x).

coordinate axes See Cartesian coordinate system.

coordinate matrix If S={v1, v2, ..., vn} is a basis
in some vector space V then any vector v from V
could be written as

v = c1v1 + c2v2 + · · ·+ cnvn.

The n× 1 column-matrix that consists of the scalars
c1, c2, ..., cn is called the coordinate matrix of the vec-
tor v with respect to the basis S.

coordinate plane The plane that is determined by
any pair of coordinate axes. See Cartesian coordinate
system.

coordinate vector The same as coordinate matrix,
only written in the form of a 1× n row-matrix.

coordinate system Any of the methods to iden-
tify points on the plane or in space with an ordered
pair or an ordered triple. See the coordinate systems
Cartesian, cylindrical, polar, rectangular, spherical.

coordinates In any coordinate system the ordered
pairs or triples corresponding to a point. The same
point may have different coordinates in different co-
ordinate systems. Example: The point with coordi-
nates (−2, 2

√
3) in the Cartesian system has coordi-

nates (4, 2π/3) in the polar system.

coplanar vectors Two or more vectors in the Eu-

clidean space Rn, that lie on the same plane.

correlation coefficient Suppose we have data in
the form of ordered pairs (x, y) and there is some
kind of relationship between x and y-variables. Cor-
relation coefficient measures the strength of that re-
lationship in numerical terms. To calculate that co-
efficient, usually denoted by r, we first normalize the
x and y-values by finding their z-scores denoted by
zx and zy respectively. The sum

r =

∑
zxzy

n− 1

is the correlation coefficient. It is defined in a way
that −1 ≤ r ≤ 1. A positive r indicates positive
correlation and a negative r indicates negative
correlation. The closer r is to 1 or -1, the stronger is
the linear relationship between the x and y-values.

corresponding angles Corresponding angles are
formed when a line crosses two coplanar lines. The
corresponding angles are not necessarily congruent,
but they are if the coplanar lines are also parallel.
In the figure above the lines a and b are parallel and
the line t is the transversal. Congruent angles are
marked accordingly.

cosecant function One of the six trigonometric
functions. Geometrically, the cosecant of an angle in
a right triangle is the ratio of the hypotenuse of the
triangle to the opposite side. The cosecant could also
be defined as the reciprocal of the sine function. The
function cscx could be extended to all real values ex-
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actly as the sinx function is extended. The domain
of cscx is all real values, except x = πn, n any in-
teger, and the range is (−∞,−1] ∪ [1,∞). cscx is
2π-periodic.
The cosecant function is related to other trigonomet-
ric functions by many identities, the most important
of these are cscx = 1/ sinx, 1 + cot2 x = csc2 x. The
derivative and integral of this function are given by
the formulas

d

dx
cscx = − cscx cotx,

∫
cscxdx = ln | cscx− cotx|+ C.

cosine function One of the six trigonometric func-
tions. Geometrically, the cosine of an angle in a right
triangle is the ratio of the adjacent side to the hy-
potenuse of the triangle. A more general approach
to extend the cosx function for any real number x
is as follows: Let P = (a, b) be any point on the
plane other than the origin and θ is the angle formed
by the x-axes and the terminal side, connecting the
origin and P . Then cos θ = a√

a2+b2
. Next, after es-

tablishing one-to-one correspondence between angles
and real numbers, we can have the cosine function
defined for all real numbers. The range of cosx is
[−1, 1] and it is 2π-periodic.
The cosine function is related to other trigonometric
functions by various identities. The most important
is the Pythagorean identity sin2 x + cos2 x = 1. The
derivative and indefinite integral of this function are:

d

dx
(cosx) = − sinx,

∫
cosxdx = sinx+ C.

cost function The total cost to a company to
produce x units of certain product. Usually denoted
by C(x). The derivative of this function is called
the marginal cost function. See also average cost
function, revenue function..

cotangent function One of the six trigonometric
functions. Geometrically, the cotangent of an angle
in a right triangle is the ratio of the adjacent side of
the triangle to the opposite side. It could also be de-
fined as the reciprocal of the tangent function. The
function cotx could be extended as a function of all
real numbers except for x = πn, n any integer, and
the range is all of R. The cotx function is π-periodic.
The cotangent function is related to the other
trigonometric functions by various identities. The
most important of these are the identities cotx =
cosx/ sinx, cotx = 1/ tanx and a version of the
Pythagorean identity 1+cot2 x = csc2 x. The deriva-
tive and integral of this function are given by the
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formulas

d

dx
cotx = −csc2x,

∫
cotxdx = ln | sinx|+ C.

coterminal angles Two angles in standard posi-
tion which have the same terminal side (see the en-
try angle for explanation of terms above). Any two
coterminal angles differ in size by an integer multiple
of 360◦ (in degree measure) or 2π (in radian mea-
sure).

counting numbers Another name for natural
numbers.

Cramer’s rule One of the methods of solving sys-
tems of linear algebraic equations which involves the
use of determinants.
For the system of n equations with n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

an1x1 + an2x2 + · · ·+ annxn = bn

the solution is given by the formulas xk =
det(Ak)/ det(A), 1 ≤ k ≤ n. Here A is the matrix of
the given system of equations and the matrices Ak are
found from A by removing the kth column and substi-
tuting it by the column of constants [b1, b2, · · · , bn].
This formula works if and only if the determinant
det(A) 6= 0.
Example: Solve the system

x1 + +xn = 6

−3x1 + 4x2 + 6xn = 30

−x1 − 2x2 + 3xn = 8

The four determinants for this system are:

|A| =

∣∣∣∣∣∣
1 0 2
−3 4 6
−1 −2 3

∣∣∣∣∣∣ , |A1| =

∣∣∣∣∣∣
6 0 2
30 4 6
8 −2 3

∣∣∣∣∣∣
|A2| =

∣∣∣∣∣∣
1 6 2
−3 30 6
−1 8 3

∣∣∣∣∣∣ , |A3| =

∣∣∣∣∣∣
1 0 6
−3 4 30
−1 −2 8

∣∣∣∣∣∣

Calculating these determinants, we get |A| =
44, |A1| = −40, |A2| = 72, |A3| =
152. Now, Cramer’s rule gives the solution
(−12/11, 18/11, 38/11).

critical point Also called critical number or value.
For a continuous function f(x) on some interval I,
a point c ∈ I is critical, if f ′(c) = 0 or f ′(c) does
not exist. Critical points are important because if a
function has a local extremum at some point in its do-
main, then that point is a critical point. The opposite
is not always true. Examples: (1) For the function
f(x) = x − 2 sinx on [0, 2π] the critical points are
x = π/3, x = 5π/3. The first one is the local mini-
mum and the second one the local maximum of the
function on the given interval. (2) For the function

f(x) =
{

2x if x ≥ 0
x if x < 0

the only critical point is x = 0 but at that point
the function has neither a minimum nor a maximum
value.
The notion of a critical point is also extended to func-
tions of several variables. A point (c1, c2, c3) is a crit-
ical point of a function f(x, y, z) of three variables if
either all first partial derivatives are equal to zero or
some of the first partial derivatives do not exist at
that point. As in the case of the functions of one
variable, here also the local maximum and minimum
values are possible at critical points only, but the
opposite is not true: not all critical points are local
minimum or maximum points for the function. These
kind of points are called saddle points.

critical value In statistics. A numeric value asso-
ciated with any distribution that depends on the type
of distribution and the confidence level desired. For
the standard normal distribution the critical values
corresponding to the most common confidence levels
90%, 95%, 99% are z∗ = 1.165, 1.96, 2.576 respec-
tively.

cross product For two vectors in three dimen-
sional space only. Let u = (u1, u2, u3) and v =
(v1, v2, v3) be vectors in R3. Then their cross product
is defined to be another vector from the same space,
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given by the formula

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

This vector could be expressed as a determinant :

u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ .
The cross product is not commutative: u× v =
−v × u.

cubic equation An equation of the form p(x) = 0,
where p is a cubic polynomial. By the Fundamental
Theorem of Algebra, any cubic equation has exactly
three solutions counting multiplicities of zeros. Sim-
ilar to quadratic equations, any cubic equation could
be solved by a formula involving radicals, however
this formula is very complicated and difficult to use.
Here is a short demonstration of that formula and its
deduction.
To solve the general cubic equation

αx3 + βx2 + γx+ δ = 0, α 6= 0, (1)

we divide it by α and get a monic equation (equation
with leading coefficient equal to 1)

x3 + ax2 + bx+ c = 0. (2)

Denoting x = y − a/3 we reduce this equation to a
simpler equation of the form

y3 + py + q = 0, (3)

where p = b − a2/3, q = c − ab/3 + 2a3/27. Let
r denote one of two complex cubic roots of unity :
r = −1/2 +

√
3i/2 or r = −1/2 −

√
3i/2 and let

∆ =
√
−(27q2 + 4p3), A = (−27q + 3i

√
3∆)/2, B =

(−27q − 3i
√

3∆)/2. The choice of the two possible
square roots for ∆ and three possible cubic roots of A
and B must be made so that (AB)1/3 = −3p. With
this notations, the three roots of equation (3) are
given by the following formulas:

y1 =
A1/3 +B1/3

3
, y2 = rA1/3 + r2B1/3,

y3 = r2A1/3 + rB1/3.

To find the solutions of equation (2), we need to make
the back substitution x = y − a/3. The solutions of
equation (1) are obviously the same as that of equa-
tion (2). Note also, that at least one of the solutions
of the equations (1)-(3) is always real.
Example: For the equation x3 − 8x− 3 = 0 the solu-

tions are 3, −3+
√
5

2 , −3−
√
5

2 .

cubic polynomial A polynomial of the third de-
gree p(x) = ax3 +bx2 +cx+d. In the particular case,
the function f(x) = ax3 is called the cubic function.

cubic root Formally, the inverse of the cubic func-
tion. A given number a is the cubic root of another
number, b, if a3 = b. The notation is a = 3

√
b.

curl of a vector field Let F = P i +Qj +Rk be a
vector field in R3 and assume that all partial deriva-
tives of the components P, Q, R exist. Then the
vector function

curlF =

(
∂R

∂y
− ∂Q

∂z

)
i

+

(
∂P

∂z
− ∂R

∂x

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k

is the curl of the vector field. See also divergence of
a vector field and gradient vector field.

curvature Let C be a smooth curve defined by
some vector function r = r(t) and let s = s(t) be that
curve’s arc length. If T = r′/|r′| is the unit tangent
vector to the curve then the curvature of the curve is
given by the formula

κ =

∣∣∣∣dTds
∣∣∣∣ .

curve (1) A plane curve is a set of all ordered
pairs (f(t), g(t)), where f and g are continuous
functions defined on some interval I = [α, β]. If no
points repeat (i.e., if (f(t1), g(t1)) 6= (f(t2), g(t2))
for two values t1 6= t2), then the curve is called
simple. If (f(α), g(α)) = (f(β), g(β)), then we
have a closed curve. If the functions defining the
curve are differentiable, the curve is called smooth.
Accordingly, if they are piece-wise differentiable then
the curve is called piece-wise smooth. A plane curve
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could be also given by a polar equation. See also
boundary curve.
(2) A curve in R3 is a set of all ordered triples
(f(t), g(t), h(t)) with all functions continuous on
some interval I. The definitions of closed, simple,
and smooth curves remain the same as above.
For calculations of lengths of curves see length of
parametric curve, length of polar curve, length of a
space curve.

cycloid A plane curve that appears as a trace of a
point on a circle, when the circle rolls on a straight
line. The parametric equations for the cycloid are
given by

x = a(θ − sin θ), y = a(1− cos θ),

where a is the radius of the circle and θ is the angle
formed by two radii in the circle, one connecting the
center with the tracing point on the cycloid and the
other connecting the center with the point where the
circle touches line.

cylinder Geometrically, a cylinder is a three
dimensional surface that consists of lines that are
parallel to some given line and pass through some
closed plane curve. The most commonly used cylin-
ders are right circular cylinders that pass through
a circle on the plane and are perpendicular to that
plane. Algebraically, a right circular cylinder is given
by the formula x2 +y2 = r2, where the third variable
z is free to assume any real values. Another example
of a cylinder is a right elliptic cylinder given by the
formula of ellipse x2/a2 + y2/b2 = 1 and the variable
z is again free.

cylindrical coordinates A coordinate system in
three dimensional space that uses polar coordinates
in two dimensions and the rectangular coordinate in
the third dimension. The relations are given by the
formulas

x = r cos θ, y = r sin θ, z = z.

Here r2 = x2 + y2 and the angle is determined from
the equation tan θ = y/x.

cylindrical shell A geometric solid which is the
difference of two concentric circular cylinders with
the same axis but different radii. For applications of
cylindrical shells see volume.
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D

damped vibration If an object oscillates and an-
other force (such as friction) affects its motion by de-
creasing its amplitude, then this results in a damped
vibration of the object. This kind of motion is de-
scribed by the differential equation

my′′ + cy′ + ky = 0,

where c is the damping constant.

data A set of values collected in the process of sam-
pling or a census. The values of the data could be
numerical (quantitative) or categorical (qualitative).

data analysis A collection of statistical methods
designed to evaluate and draw conclusions from a
body of data. For specific methods see, e.g. con-
fidence interval, hypothesis testing, analysis of vari-
ance, etc.

decimal numbers The numeric system with base
ten. This system uses ten digits 0,1,2,3,4,5,6,7,8,9
and the place value system, which takes into consid-
eration the position of the digit along with its value,
to write all real numbers. For example, in the number
3531 the two 3’s have different values because of being
in different positions. The first 3 represents 3000 and
the second one 30. To represent fractional and even
irrational numbers in decimal system, we use the dec-
imal point (in many countries a coma is used), which
separates the whole part of the number from the frac-
tional. In the number 43.587 the 43 is the whole
part and the digits after the point represent the frac-
tional part. Hence, 43.587 = 43+0.587. Any fraction
(rational number), could be written as either a ter-
minating or non-terminating, repeating decimal. On
the other hand, any irrational number can be writ-
ten as an infinite non-repeating decimal. Examples:
3/8 = 0.375, 1/3 = 0.333...,

√
2 = 1.414213562....

See also binary numbers.

deciphering matrix The matrix used to decipher
a coded message, usually, the inverse of the matrix
that coded the message.

decomposition of matrices Writing a given ma-
trix as a sum or product of two or more matrices.
For a specific way of splitting a matrix see LU(lower
upper)-decomposition.

decreasing function The function f(x) defined on
some interval I is decreasing, if for any two points
x1, x2 ∈ I, x1 < x2, we have f(x1) > f(x2). The
function f(x) = 2−x is an example of a decreasing
function.

decreasing sequence A sequence of real numbers
{an}, n ≥ 1, is decreasing, if am < ak whenever
m > k. The sequence an = 1/n2 is an example of a
decreasing sequence.

definite integral (1) Let the function f(x) be de-
fined and continuous on some finite interval [a, b].
Definite integral of a function could be defined in
many different but equivalent ways and we present
some of this definitions.
Let us divide the interval into n equal parts of size
∆x = (b− a)/n. Denote the endpoints of these parts
by x0(= a), x1, x2, · · · , xn(= b) and chose arbitrary
points x∗1, x

∗
2, · · · , x∗n in each of these smaller inter-

vals [xi−1, xi], 1 ≤ i ≤ n. Then the definite integral
of f on the interval [a, b] is the limit∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗i )∆x

if the limit exists. In special cases of this definition
the sample points x∗i can be chosen to be the left
endpoints or right endpoints, or the midpoints of in-
tervals. They all are equivalent to the more general
definition.
The sum in the definition of the integral is called a
Riemann sum and the definite integral is called the
Riemann integral. The calculations for definite in-
tegrals are done primarily by the use of the Funda-
mental Theorem of Calculus, rather than using the
definition directly. Examples:∫ 4

1

4x3dx = x4|41 = 256− 1 = 255,

∫ π

0

sinxdx = − cosx|π0 = −(−1)− (−1) = 2.
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For a positive function f(x) ≥ 0 on [a, b] the defi-
nite integral is just the area under the graph of this
function. More generally, the definite integral is the
difference of the areas above and below the x-axis for
the graph of a given function.
(2) This definition could be used to include also func-
tions with finite number of jump discontinuities. The
notion of the definite (Riemann) integral could be
generalized to include more general functions, such
as with infinite discontinuities or defined on infinite
intervals. See improper integral.
(3) Further generalizations of the definite integral re-
sulted in development of other types of integrals (Stil-
jes, Lebesgue, Denjoy, etc.).

definite integration The process of calculating
the definite integral of some function.

degenerate conic sections Special cases of conic
sections, when the plane cutting the cone produces
a point or a pair of intersecting lines. Algebraically,
these cases correspond respectively to the equations

x2

a2
+
y2

b2
= 0, y2 = a,

x2

a2
− y2

b2
= 0.

degree of freedom If n unknowns (or variables)
x1, x2, · · · , xn are connected by one relation, then
only n−1 of them can be chosen arbitrarily, whereas
the nth one is dependent on the other choices. For
that reason we say that the degree of freedom of these
variables is n−1. If the same unknowns are connected
by two relations, then the degree of freedom would
be n− 2, and so on.

degree of a polynomial For a general polynomial
given by the formula

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

the whole number n ≥ 0. Example: For the polyno-
mial p(x) = 3x5 − 2x4 + 5x2 − 6 the degree is 5.

degree measure of an angle One of the two main
units for measuring an angle (the other unit is called
radian measure). In this system the circumference
of any circle is divided into 360 equal arcs and the
angle subtended on one of those arcs is said to have

the measure 1◦. Hence, the right angle would have
90◦ and the straight angle 180◦. See also angle.

demand function Also called price function. The
price of the product when a company wants to sell x
units of that product, usually denoted by p(x). The
graph of a demand function is called a demand curve.
Closely related are revenue function, profit function.

DeMoivre’s theorem Let the complex number
z be written in trigonometric form: z = reiθ =
r(cos θ + i sin θ). Then for any integer n zn =
rneinθ = rn(cosnθ + i sinnθ).

denominator (1) For the numeric fraction a
b , the

number b. (2) For the rational function p(x)
q(x) , the poly-

nomial q. (3) For any expression of the form f(x)
g(x the

function g(x).

dense set A subset of real numbers is dense, if for
any point a of that set there are infinitely many other
points b of the same set, arbitrarily close to a. For-
mally, the set S in R is dense, if for any point a ∈ S
and any number ε > 0, there exists another point
b ∈ S, such that |a− b| < ε. Examples: The set of all
rational numbers is dense, but the set of all integers
is not.

density function Also called probability density
function. A function that represents some type of dis-
tribution. The graph of a density function is called a
density curve. Density function must be non-negative
and that the area under a density curve is exactly 1,
since it represents the total probability. Symbolically,
a function f(x) is a density function if f(x) ≥ 0 and∫ ∞

−∞
f(x)dx = 1.

dependent variable In an equation y = f(x) the
variable y. The variable x is called the independent
variable.

derivative Let the function f(x) be defined on
some interval (a, b). The derivative of the function
at some point x = c is defined as the limit

f ′(c) = lim
x→c

f(x)− f(c)

x− c
,
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if this limit exists. The derivative of a function is a
function itself given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

where x is any point in the domain of the function
such that this limit exists. The set of all these points
is the domain of the derivative. Some other common
notations for the derivative of y = f(x) are:

y′,
dy

dx
,
df

dx
, Dxf, Df(x).

In practice, derivatives are calculated by the differen-
tiation rules, rather than using the definition directly.
Examples:

(xn)′ = nxn−1, (tan−1 x)′ =
1

1 + x2
, (ex)′ = ex.

See also left-hand derivative, right-hand derivative.
For derivatives of functions of several variables see
partial derivatives, directional derivatives, normal
derivatives.

derivative of a composite function See chain
rule.

derivative of indefinite integral Let f be a con-
tinuous function on some interval [a, b] and F (x) =∫ x
a
f(t)dt. Then F ′(x) = f(x) for a < x < b. This re-

sult is one case of the Fundamental Theorem of Cal-
culus. This statement has far reaching generaliza-
tions for functions f(x) other than continuous func-
tions.

derivative of the inverse function Let f(x) be
a differentiable function on some interval I and let
g(x) be its inverse. Then, if for some point a ∈ I,
f ′(g(a)) 6= 0, then the derivative of g at that point is
given by

g′(a) =
1

f ′(g(a))
.

This formula makes it possible to calculate deriva-
tives of functions if we know the derivatives of their
inverse. Example:

d

dx
(sin−1 x) =

1√
1− x2

,

because we know that (sinx)′ = cosx and
cos(sin−1 x) =

√
1− x2.

derivative of a vector function See differentia-
tion of vector functions.

Descartes’ rule of signs Let the polynomial of
degree n ≥ 1 be written in the standard form:

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

and a0 6= 0. Then (1) The number of positive zeros
of p is either equal to the number of sign changes
of coefficients of p(x) or is less than that number
by an even integer; (2)The number of negative zeros
of p is either equal to the number of sign changes
of coefficients of p(−x) or is less than that num-
ber by an even integer. Example: The polynomial
p(x) = 2x3 − 5x2 + 6x− 4 has three sign changes, so
it may only have three or one positive zeros (roots).
Next, p(−x) = −2x3 − 5x2 − 6x − 4, has no sign
changes, so p cannot have any negative zeros.

determinant A number, associated with any
square matrix. For a given matrix A the notations
for corresponding determinant are |A| or det(A). The
value of the determinant is defined recursively as fol-
lows: If the matrix is 1 × 1, A = (a), then |A| = a.
For the 2× 2 matrix (

a b
c d

)
,

|A| = ad− cb. In general, for the n× n matrix
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann


the determinant is equal to

|A| =
n∑
j=1

a1jC1,j ,

where C1,j are the first row cofactors. This presenta-
tion is called expansion by the first row. It is possible
to expand the determinant by any row or column and
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the formulas are similar. Example:∣∣∣∣∣∣
−2 2 3
1 −3 −4
−4 0 1

∣∣∣∣∣∣ = (−2)

∣∣∣∣−3 −4
0 1

∣∣∣∣
−2

∣∣∣∣ 1 −4
−4 1

∣∣∣∣+ 3

∣∣∣∣ 1 −3
−4 0

∣∣∣∣
= (−2) · (−3)− 2 · 17 + 3 · 12 = 8.

Equivalent definition of determinants is possible with
the use of permutations and signed elementary prod-
ucts. With this approach, the determinant of the
matrix is defined as the sum of all possible signed el-
ementary products and the signs depend on the fact
of the permutation being odd or even.

determinant function The same as determinant
of a square matrix. Equivalent definition: Deter-
minant function is the sum of all signed elementary
products.

deviation In statistics, the difference between an
individual value of a set and the mean of all set of
values under consideration. See also standard devia-
tion and variance.

diagonal In geometry, in case of polygons or poly-
hedra, diagonal is understood as any segment, con-
necting the vertices of that objects.

diagonal matrix A matrix, that has its only non-
zero elements on the main diagonal. The general di-
agonal matrix has the form

a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

...
0 0 0 . . . an



diagonalization of matrices A square matrix A
is diagonalizable, if there exists an invertible matrix
P such that P−1AP = D and D is a diagonal matrix.
The main theorem in the problem of diagonalization
states that a matrix is diagonalizable if and only if it
has a system of linearly independent eigenvalues. Ad-
ditionally, the matrix P could be chosen in such a way

that that eigenvalues be the elements on the diago-
nal of D. The method of diagonalization is also used
in solving homogeneous or non-homogeneous differ-
ential equations.

diameter For a circle, the line segment passing
through the center an connecting two opposite points
on the circumference. Standard formulas involving
diameter are: d = 2r, r is the radius of the circle,
C = πd, C is the length of circumference.

difference When performing the operations of sub-
tracting one number from the other, one function
from the other, one matrix from the other, etc., the
result is the difference of given objects.

difference quotient For a given function f(x) the
expressions

f(x)− f(a)

x− a
or

f(x+ h)− f(x)

h
,

where x 6= a and h 6= 0. These expressions are the
important part of definition of the derivative of the
function.

difference law of limits If the functions f(x) and
g(x) both have finite limits when x approaches some
point a, then the limit of the difference function is
also finite and

lim
x→a

(f − g)(x) = lim
x→a

f(x)− lim
x→a

g(x).

See also limit laws.

difference rule For differentiation. If f(x) and
g(x) are differentiable, then

[(f − g)(x)]′ = f ′(x)− g′(x).

See also differentiation rules.

differentiable function at a point x = c. A func-
tion, that is defined at a neighborhood of the point c
and for which the first derivative exists. If that prop-
erty is true for all points of some interval (a, b), then
the function is called differentiable on that interval.

differential (1) For functions of one variable. Let
y = f(x) be a differentiable function. Then

df = dy = f ′(x)dx
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is called the differential.
(2) For functions of several variables. Let f(x, y, z)
be differentiable. Then

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

is the differential of f . Differential of a function of
two or n variables is defined similarly. In multidimen-
sional case the differential is also called total deriva-
tive.

differential equation An equation that involves
the unknown function along with its derivatives of
some order. These equations are classified depending
on order of derivative, the type of coefficients and
many other characteristics. The equation

2x2y′′ − sinxy′ + ln y = 3x

is a non-homogeneous second order linear ordinary
differential equation with variable coefficients. In
cases when the right side is zero (i.e., only the func-
tions y, y′y′′, etc. are involved), the equation is called
homogeneous. If any of the ”variables” y, y′y′′, · · ·
are present in a non-linear form, then the equation is
called non-linear. When functions of several variables
and their partial derivatives are involved, equation is
called partial differential equation. The solution of
differential equation is any function, that substituted
into the equation makes it an identity. The general
solution of an equation is a solution that contains all
possible solutions.

differential operator An operation that assigns
to a given function an expression containing that
function and some of its derivatives. The expression

L[φ](x) = φ′′ + p(x)φ′ + q(x)φ,

where φ(x) is twice differentiable function is an exam-
ple of second order differential operator. The order of
the operator is determined by the highest derivative
involved.

differentiation The process of calculating the
derivative of some function. See also implicit differ-
entiation, partial differentiation.

differentiation rules Also called differentiation

formulas. These are the rules that allow to calcu-
late derivatives of functions easily, without relying
on its definition. Here are the basic rules.
Let f(x) and g(x) be two differentiable functions on
some interval. Then for derivatives of their sum, dif-
ference, product, and quotient we have:

d

dx
[f(x)± g(x)] =

d

dx
f(x)± d

dx
g(x)

d

dx
[f(x)g(x)] = g(x)

d

dx
f(x) + f(x)

d

dx
g(x)

d

dx

[
f(x)

g(x)

]
=
g(x) d

dxf(x)− f(x) d
dxg(x)

[g(x)]2
.

For derivative of composite functions see chain rule
and for derivatives of implicit functions see implicit
differentiation.

differentiation of a vector function Let r(t) be
a three dimensional vector function. The derivative of
this function is defined very similar to the derivative
of scalar functions:

r′(t) = lim
h→0

r(t+ h)− r(t)

h

if the limit exists. Vector differentiation follows the
same rules as for scalar functions in the sense that
addition, subtraction, scalar multiplication rules are
identical. However, since there is no notion of divi-
sion of vectors, we do not have quotient rule. Fur-
thermore, multiplication has two versions for three
dimensional vectors: scalar product and cross prod-
uct. The product rules in both cases are similar: If
u(t) and v(t) are two vector functions, then

d

dt
[u(t) · v(t)] = u′(t) · v(t) + u(t) · v′(t),

d

dt
[u(t)× v(t)] = u′(t)× v(t) + u(t)× v′(t).

All these rules are also valid for vector functions in
any dimensional space except the last one because
the cross product is defined in R3 only. Additionally,
the chain rule has the following form:

d

dt
[u(f(t)) = f ′(t)u′(f(t)).
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digits In decimal numeric system the numerals
0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

dilation operator Or dilation transformation. An
operator that applied to a vector does not change its
direction but makes its norm bigger. The operator is
given by the formula Tx = kx, where k ≥ 1. In the
case 0 ≤ k ≤ 1 the transformation is called contrac-
tion operator. For a more general case when not only
the norm but also the direction could be changed, see
expansion operator.

dimension of vector space If a vector space
V has a system of linearly independent vectors
{v1,v2, · · · ,vn}, that span V , then the number n
is the dimension of the vector space. Also, any basis
of V , has the same number of vectors. In the case,
when there is no finite basis, the space is called infi-
nite dimensional.

dimension theorem for linear transformations
Similar to dimension theorem for matrices. If T is a
linear transformation from the n-dimensional vector
space V to some other vector space W , then

rank(T ) + nullity(T ) = n.

dimension theorem for matrices If A is a ma-
trix with n columns, then

rank(A) + nullity(A) = n.

Here rank(A) is the rank of the matrix and
nullity(A) is the dimension of the kernel of the ma-
trix.

Dirac delta function A generalized ”function”,
formally defined for any real point c by the condi-
tions:

δ(t− c) = 0, t 6= c,

∫ ∞
−∞

δ(t− c)dt = 1.

The Laplace transform of this function could be cal-
culated in generalized sense and is equal to e−sc.
Additionally, convolution of any function with Dirac

function results in the value at point c:∫ ∞
−∞

δ(t− c)f(t)dt = f(c).

This function plays very important role in theoretical
phisics.

direct variation The name of many possible re-
lations between two variables. The most common
are:(1) y varies directly with x means that there is
a real number k 6= 0, such that y = kx; (2) y varies
directly with x2 means y = kx2; (3) y varies directly
with x3 means y = kx3. There are many other pos-
sibilities but rarely used. Compare also with inverse
variation and joint variation.

directed line segment The same as vector.

directional derivative For functions of two real
variables. Let u = (a, b) be a unit vector in the plane
and f(x, y) be a function. The derivative of f in di-
rection of the vector u at some point (x0, y0) (denoted
by Duf(x0, y0)) is the limit

lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
,

if it exists. The definition for functions of three or
more variables is similar.

direction angles The angles any nonzero vector v
makes with the coordinate axes are called direction
angles. The cosines of these angles are the direction
cosines. Hence, if α is the angle between v and x-axis,
then

cosα =
v · i
|v||i|

and similarly for other two directions. If a vector is
used to describe the direction of some line then the
direction cosines are also called direction numbers.

direction field For differential equations such as
the equation y′ = f(t, y). We can make a direc-
tion field by choosing several points on the coordinate
plane and by drawing a small line segment from each
point with the slope equal to the value of f at that
point. This method is a useful tool when trying to
get an idea about the behavior of the solution which
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is difficult (even impossible) to find.

directrix In geometric definition of the parabola,
the name of the fixed line with the following prop-
erty: A parabola is the set of all points on a plane
that are equidistant from a fixed point (called focus)
and a fixed line, not containing that point is called
directrix. In a more general view, directrix could be
defined also for ellipses and hyperbolas. See eccen-
tricity.

discontinuity Property for a function, opposite to
being continuous. A function could be discontinuous
by different reasons. For example, the function

f(x) =
{

1 if x ≥ 0
−1 if x < 0

is discontinuous at the point x = 0, because the
left-hand and right-hand limits at that point are not
equal. The function f(x) = 1/x is discontinuous at
the point x = 0, because it is not defined there. See
also discontinuous function.

discontinuous coefficients Usually applies to dif-
ferential equations with variable coefficients. In many
cases these kind of equations can be solved (or shown
to have a solution) even if the coefficients have some
type of discontinuity, usually jump discontinuity.

discontinuous function A function f(x) is dis-
continuous at some point x = c, if one of the following
happens. (1) The limit limx→c f(x) does not exist.
(2) The limit exists, but does not equal the value of
the function at that point: limx→c f(x) 6= f(c). (3)
The function is defined around that point, but not at
the point.
This property is opposite to the property of being
continuous.

discrete variable A variable that does not take
its values continuously. Being discrete could be ex-
pressed in different ways. For example, if the variable
x takes whole values 0, 1, 2, 3, · · · or it takes rational
values, then it will be discrete in both situations. As
a rule, however, we usually consider random variables
taking either whole or integer values.

discriminant For the general quadratic function

f(x) = ax2 + bx+ c

the quantity D =
√
b2 − 4ac is the discriminant.

Depending on the sign of D, the corresponding
quadratic equation f(x) = 0 has: (1) Two distinct
real roots, if D > 0; (2) Two real repeated roots, if
D = 0 ,or (3) Two complex conjugate roots, if D < 0.

disjoint events Two events that cannot happen at
the same time. In symbolic form, if A and B are the
events, then they are disjoint if A ∩B = ∅.

disk The term is used as a synonym for circle. The
spelling disc is also valid.

displacement Some kind of shift or move from the
given position.

distance One of the most important geometric
(and also physical) notions. The distance is under-
stood as a measure of how far or close two objects
are. Different measuring methods and also different
measuring units, such as metric or English measuring
units, may be used. In Algebra and Calculus we mea-
sure distances by the distance formula or by many
other methods, such as arc length formula, involving
integration. See corresponding entries for details.

distance between a point and a line If (a, b)
is some point on the plane and the equation Ax +
By + C = 0 represents a line, then the distance of
the point from the line is given by the formula

d =
|Aa+Bb+ C|√

A2 +B2
.

distance between a point and a plane Let the
equation of a plane be given by Ax+By+Cz+D = 0
and the point P (x0, y0, z0) is not on the plane. The
distance now will be given by the formula

d =
Ax0 +By0 + Cz0 +D|√

A2 +B2 + C2
.

distance formula Let (x1, y1) and (x2, y2) be two
points on the plane. Then the distance between them
is given by the formula

d =
√

(x2 − x1)2 + (y2 − y1)2.

Similarly, if x = (x1, x2, · · · , xn) and y =
(y1, y2, · · · , yn) are two vectors in Euclidean spaceRn,
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then the distance is given by a similar formula

d =

√√√√ n∑
k=1

(yk − xk)2.

distance problem The problem of finding the dis-
tance traveled by a moving object. If the object
moves with a constant speed v, then the distance,
s is given by s = v · t, where t is the time of travel. In
general, if the velosity of the object is variable and is
given by the function f(t), then the distance traveled
between time periods t = a and t = b will be given
by the integral

s =

∫ b

a

f(t) dt.

distribution More precisely, probability distribu-
tion. For any random event, the outcomes appear
with certain frequencies. The combination of all out-
comes with their relative frequences is a distribution.
Depending on types and number of outcomes, dis-
tributions are divided into discrete and continuous.
Any discrete distribution has only finite number of
outcomes and continuous distributions have infinitely
many, but not discrete outcomes.
(1) Discrete distributions. Every outcome has a prob-
ability (frequency) of appearing, that is either posi-
tive or zero. The sum of probabilities of all possi-
ble outcomes is 1. Formally, if there are n outcomes
X1, X2, · · · , Xn and P (A) indicates the probability
of an event A, then P (Xi) ≥ 0, i = 1, 2, · · · , n and∑
P (Xi) = 1. Binomial distribution is one of the

most common discrete probability distributions and
histograms are their most common visual representa-
tions.
(2) Continuous distributions are represented by a
density curve which is the graph of a positive func-
tion with the property that the area under that curve
is 1. Individual probability of any outcome is always
zero (because there are infinitely many outcomes),
hence the probabilities in question are probabilities
of groups of events. This means that if X is any
random outcome, then P (X) = 0 but, for example

P (a ≤ X ≤ b) ≥ 0. Additionally, as in the case of
discrete distributions, the probability of all space of
outcomes is 1. For specific examples of continuous
distributions see normal distribution, Poisson distri-
bution, t-distribution, F-distribution, uniform distri-
bution.

distributive property For any real or complex
numbers a, b, c, the property

a(b+ c) = ab+ ac,

that allows to group, or to split algebraic or nu-
meric expressions. Similar properties are valid also
for other mathematical objects, such as functions,
matrices, etc.

divergence of a vector field For a vector field
F = P i + Qj + Rk in R3 the divergence is a scalar
function, defined by the equation

divF =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
,

if the partial derivatives exist. See also curl of a vec-
tor field and gradient vector field.

divergence test for series Let {an} be a se-
quence of numbers. If limn→∞ an does not exist or
if limn→∞ an 6= 0, then the series

∑∞
n=1 an is diver-

gent.

divergence theorem Let F = P i + Qj + Rk be
a vector field with continuously differentiable com-
ponents in some open region of R3. Let D be a re-
gion,contained in the domain of F, with the boundary
S. Then, if n is the outward normal to S, we have
the relationship∫ ∫

S

F · n dS =

∫ ∫ ∫
D

divF dV.

Also called Gauss’ theorem.

divergent improper integral (1) The improper
integral

∫∞
a
f(x)dx is divergent, if the limit

lim
A→∞

∫ A

a

f(x)dx

does not exist or is infinite. The definitions for inte-
grals

∫ b
−∞ f(x)dx and

∫∞
−∞ f(x)dx are similar.
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(2) For improper integrals of unbounded functions

on bounded intervals
∫ b
a
f(x)dx, where f has infinite

limit at the point x = b. We call that integral diver-
gent, if the limit

lim
δ→0

∫ b−δ

a

f(x)dx

does not exist or is infinite. The definitions for the
cases when the point of unboundedness of the func-
tion is the left endpoint or some inside point, is sim-
ilar.

divergent power series Each power series

∞∑
n=0

cn(x− a)n

has an interval of convergence given by |x − a| < R,
where R ≥ 0. For any values of x, |x − a| > R, the
series will be divergent. In case when R = 0, the se-
ries will be convergent in one point only, x = a. See
also divergent series and convergent series.

divergent sequence A sequence, where the terms
do not go to any particular finite limit. The opposite
of the convergent sequence. Examples: The sequences
1,−1, 1,−1 · · · and 1, 4, 9, ..., n2, ... are divergent.

divergent series A numeric series
∑∞
n=1 an is di-

vergent, if the sequence of its partial sums Sn =∑n
i=1 ai does not have a finite limit, i.e. is a di-

vergent sequence. The opposite of convergent series.
Examples: The harmonic series is divergent, because
its partial sums grow indefinitely large. The series
1− 1 + 1− 1 + 1−· · · is divergent, because its partial
sums do not approach any particular limit.
The notion of divergence applies also to functional
series such as power series or Fourier series. A func-
tional series is divergent at some point if the numeric
series formed by the values of functional series at that
particular point is divergent.

dividend In the division process of two numbers,
the number, that is getting divided. The other num-
ber is called divisor.

divisible polynomial A polynomial, that can be
divided by another polynomial. By the Fundamental

Theorem of Algebra, any polynomial of degree two or
higher is divisible by another polynomial, with pos-
sibly complex coefficients. If we restrict division to
be by real polynomials only, then not all the poly-
nomials will be divisible. Examples: The polynomial
p(x) = x2 − 5x + 6 is divisible by real polynomials
x− 2 and x− 3. The polynomial q(x) = x2 + 4 is not
divisible by any real polynomial but it is divisible by
complex polynomials x+ 2i and x− 2i.

division One of the four basic operations in alge-
bra and arithmetic. By dividing two numbers we get
their ratio. Division is possible by any real (or com-
plex) number, except zero. Division of any number
by zero is not defined.

division of complex numbers (1) To divide two
complex numbers a+ib

c+id , written in the standard form,
we multiply both numerator and denominator by the
conjugate of the denominator, c− id. This allows to
get a real number c2 + d2 in the denominator and di-
vide the resulting complex number in the numerator
by that real number:

a+ ib

c+ id
=
ac− bd
c2 + d2

+
ad+ bc

c2 + d2
i.

(2) If the complex numbers z = r(cos θ + i sin θ) and
w = ρ(cosφ+ sinφ) are given in trigonometric form,
then

z

w
=
r

ρ
[cos(θ − φ) + i sin(θ − φ)].

division of fractions To divide the fraction a/b
by another fraction c/d, we just multiply the first
one by the reciprocal of the second:

a

b
÷ c

d
=
a

b
· d
c

=
ad

bc
.

See also multiplication of fractions.

division of functions For two functions f(x) and
g(x) their quotient (division function) is defined to

be the quotient of their values: f
g (x) = f(x)

g(x) . This

function is defined where f and g are defined, except
where g(x) = 0.

division of polynomials Let P (x) and Q(x) be
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two polynomials and assume that degree of Q is less
or equal to the degree of P . To divide P by Q, means
to find out ”how many times Q fits into P”. As
in the case of division of integers, the result is not
always a specific polynomial, but rather there is some
remainder. By the division algorithm, in this case we
have

P (x)

Q(x)
= D(x) +

R(x)

Q(x)
,

where R(x) is the remainder of this division. Exam-
ple:

5x3 − 4x2 + 7x− 2

x2 + 1
= 5x− 4 +

2x+ 2

x2 + 1
.

In practice, division process is done either by long
division , or by synthetic division algorithms. The
second one is possible only if we need to divide by a
binomial of the form x− c. See corresponding entries
for the details of the algorithms.

divisor In the division process of two numbers, the
number, that divides the other one, called dividend.

domain of a function For a function of one real
variable f(x), the set of all real values x, such that the
function is defined and is finite. More generally, for a
function f(x1, x2, · · · , xn) of n independent variables,
the region G in the Euclidean space Rn, such that f
is defined for all values of variables that belong to the
region G.
Examples: For the function of one variable

f(x) =
1√
x− 1

the domain is the set {x|x > 1} because the square
root function is defined for non-negative values of ar-
gument and, additionally, division by zero is not de-
fined.
For the function of two variables

f(x, y) = ln(x2 + y2)

the domain is all values of x and y except (0, 0)
because the logarithmic function is not defines at
the origin.

dot product For any two vectors x =

(x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) in Eu-
clidean space Rn, the number

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Dot product is a special case of inner product. See
also scalar product.

double angle formulas For trigonometric func-
tions the formulas

sin 2x = 2 sinx cosx

cos 2x = cos2 x− sin2 x =

2 cos2 x− 1 = 1− 2 sin2 x

tan 2x =
2 tanx

1− tan2 x
.

Similar formulas are valid for other trigonometric
functions but are rarely used.

double integral (1) Let a function f(x, y) of two
variables be defined on some rectangular region D =
[a, b] × [c, d] = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}. Then
the double integral of the function in the domain D
is the limit of its Riemann sums, as the number of
partitions of the sides of rectangle goes to infinity:∫ ∫

D

f(x, y)dA =

∫ ∫
D

f(x, y)dxdy

= lim
n,m→∞

n∑
i=1

m∑
j=1

f(x∗i , y
∗
j )∆x∆y.

(2) In the case the function is given on a more general
region than a rectangle, the definition requires some
modifications. Assume that the region has the form

D = {(x, y)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)},

where g1, g2 are continuous on [a, b]. Then the double
integral on this type of regions is defined to be the
iterated integral∫ ∫

D

f(x, y)dA =

∫ b

a

∫ g2(x)

g1(x)

f(x, y)dydx.

(3) Integrals over the regions of the type

D = {(x, y)|c ≤ y ≤ d, h1(y) ≤ x ≤ h2(y)}
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are defined similarly. See also definite integral, triple
integral, multiple integral.

double Riemann sum Let a function f(x, y) of
two variables be defined on some rectangular region
D = [a, b]× [c, d] = {(x, y)|a ≤ x ≤ b, c ≤ y ≤ d}. In
analogy of forming Riemann sums, we divide interval
[a, b] into n equal parts of size ∆x = (b−a)/n and in-
terval [c, d] into m equal parts of size ∆y = (d−c)/m
by choosing points x0(= a), x1, · · · , xn(= b) and y0(=
c), y1, · · · , ym(= d). In resulting smaller rectangles
Di,j = [xi−1, xi] × [yj−1, yj ], 1 ≤ i ≤ n, 1 ≤ j ≤ m,
we choose some points (x∗i , y

∗
j ) and form the double

sum
n∑
i=1

m∑
j=1

f(x∗i , y
∗
j )∆x∆y,

which is called double Riemann sum. The choice
of points (x∗i , y

∗
j ) is arbitrary, and (under some

restrictions on function) always results in the same
limit. See also double integral.

E

e One of the most important universal constants in
mathematics. This is a non-algebraic, transcenden-
tal number, such that there are many approximation
formulas. Among them, most familiar are:

e =

∞∑
n=0

1

n!

and

e = lim
n→∞

(1 +
1

n
)n.

The decimal approximation of e is 2.7182818...

eccentricity For conic sections. Let L be a fixed
line on the plane (called directrix ) and P be some
point (called focus), outside of that line. A positive
real number e is now fixed. The set of all points Q
on the plane, satisfying the relation

dist(Q,P )

dist(Q,L)
= e

is called conic section and e is its eccentricity. In case
e < 1 the result is ellipse, for e = 1 we get parabola
and when e > 1, the result is hyperbola. For ellipses
and hyperbolas the eccentricity has a simpler descrip-
tion. See respective definitions.

echelon form of a matrix Also called row eche-
lon form. The result of performing Gaussian elimina-
tion process on the matrix. In echelon form each row
should start with zero or the leading one. Further, in
each next row the leading one should be to the right
of the previous row’s one. Finally, the rows with all
zero elements should appear in the bottom rows only.
Example: The matrix

1 4 0 −3
0 0 1 0
0 0 0 1
0 0 0 0


is in row echelon form. The matrix is said to be in
reduced row echelon form, if, additionally, the only
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non-zero entries are the leading ones.

eigenspace Let λ be an eigenvalue of a given
square matrix A and assume {x1, · · · ,xk} are all lin-
early independent eigenvectors of that matrix cor-
responding to the same eigenvalue. Linear space
spanned by that vectors is called the eigenspace for
the eigenvalue λ.

eigenvalues of matrix For a square matrix A, a
real or complex number λ, such that there exists a
non-zero vector x satisfying the equation Ax = λx.
Eigenvalues are roots of the characteristic equation.
An eigenvalue is called simple if it appears only once
in the factorization of the characteristic polynomial.
There are two different notions of multiplicity for
eigenvalues. The number of times λ − λ0 appears in
the factorization of the characteristic polynomial is
its algebraic multiplicity. On the other hand, the di-
mension of the eigenspace, corresponding to the value
λ0 is its geometric multiplicity. According to a theo-
rem, the geometric multiplicity is always less than or
equal to its algebraic multiplicity. See also eigenvec-
tors of matrix below.

eigenvectors of matrix A non-zero vector x, sat-
isfying the equation Ax = λx for some square matrix
A and real or complex number λ. The number λ is
called an eigenvalue. Eigenvectors, corresponding to
different eigenvalues are orthogonal (and hence, lin-
early independent). See also eigenvalues of matrix.

element of a matrix The numbers (or functions)
that form a matrix. See also entries of a matrix.

element of a set Members of the given set. De-
pending on nature of the set the elements can be num-
bers, functions, matrices or any other mathematical
objects.

elementary matrices Any matrix, which could be
received from the identity matrix by one elementary
row operation. Example: The matrix 1 0 0

0 1 0
1 0 1


is elementary, because it is the result of adding the
first row to the third row of the identity matrix.

elementary product For a square matrix A of size
n, elementary product is any product of n elements
from that matrix that contains exactly one element
from each row and each column. See also signed ele-
mentary product.

elementary row operations For systems of alge-
braic linear equations or matrices the three elemen-
tary row operations are:
(1) Interchanging any two rows;
(2) Multiplying any row by any non-zero constant;
(3) Adding non-zero multiple of any row to any other
row.
These operations are performed as a part of elimina-
tion method of solving systems of linear equations.

elimination method One of the methods of solv-
ing systems of equations with more than one vari-
able. The method constitutes of eliminating one of
the variables in one or more equations, thus arriv-
ing to equation (or system of equations) with less
variables. This approach is mainly used for solving
systems of linear equations but can also be used for
solving non-linear systems. For specific description of
this method for solving systems of linear equations,
see Gaussian elimination or Gauss-Jordan elimina-
tion.

ellipse One of the three main conic sections. Ge-
ometrically, an ellipse is the location (locus) of all
points in a plane, the sum of whose distances from
two fixed points in the plane is a positive constant.
The two points, from which we measure distances, are
called foci (plural for focus). Equivalently, the ellipse
could be described as the result of cutting double cone
by a plane not parallel to its axis or any of the gen-
erators of the cone, and not passing through vertex
of the cone. In the special case, when the plane is
perpendicular to the axis, the result is a circle. An
ellipse is a bounded smooth curve. Alternative geo-
metric definition could be given with the use of ec-
centricity. See corresponding definition.
Algebraically, the general equation of an ellipse is
given by the quadratic equation Ax2 +Bxy+Cy2 +
Dx + Ey + F = 0, where A, B, C, D, E, F are
real constants and A · C > 0. In the case, when the
foci are located on one of the coordinate axes and
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center coincides with the origin, this equation could
be transformed into standard form

x2

a2
+
y2

b2
= 1,

where the constants a, b have special meaning: c =√
a2 − b2 is the distance from origin to a focus.

Moreover, the intersection points of ellipse with the
coordinate axes are called vertices of ellipse and their
distances from origin are equal to a and b. The line
connecting two foci is called major axis and the per-
pendicular line (passing trough origin) is the minor
axis.
In the more general case, when the center of ellipse is
located at some point (h, k) but the major and minor
axes are still parallel to coordinate axes, the standard
equation becomes

(x− h)2

a2
+

(y − k)2

b2
= 1.

In these cases eccentricity is given by the formula
e = c/a.
Both of the above cases happen when in the general
equation the term Bxy is missing. In the case B 6= 0
the result is still an ellipse, which is the result of
rotation of one of the previous simpler cases.
The ellipse could also be given by its polar equation:

r =
de

1± e cos θ
or r =

de

1± e sin θ
,

where d > 0 and 0 < e < 1 is the eccentricity of the
ellipse.

ellipsoid The three dimensional surface given by
the formula

x2

a2
+
y2

b2
+
z2

c2
= 1.

elliptic cone The three dimensional surface given
by the formula

x2

a2
+
y2

b2
− z2

c2
= 0.

This surface represents a cone which perpendicular
cuts are ellipses instead of circles. In particular case
a = b we get circular cone.

elliptic paraboloid The three dimensional surface
given by the formula

x2

a2
+
y2

b2
=
z

c
.

The picture shows the paraboloid given by the
equation z = x2 + y2.
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empty set The set, that contains no elements. The
notation is ∅.

endpoints For the closed or open intervals
[a, b], (a, b), the points a and b. The same is true
for half-open intervals [a, b) and (a, b].

endpoint extreme value Minimum or maximum
value of a function, that occurs at the endpoint of the
closed interval [a, b].

English system of measurements The system
where the distances (also areas and volumes) are mea-
sured by inches(in), feet(ft), yards(y), and miles(mi)
and the weights are measured using ounces(oz) and
pounds(lb). Unlike the metric system of measure-
ments which is based on decimal numeric system, re-
lations in English system are more or less arbitrary.
Here are some of that relations: 1 ft= 12in; 1 y=3 ft,
1 mi= 1760 y , 1 lb= 16 oz.

entries of matrix Same as elements of a matrix.

epicycloid When a circle rolls on the outside of a
fixed circle, the path of any point is called epicycloid.
Let a be the radius of the fixed circle with center at
the origin and b be the radius of the moving circle.
When we connect the origin (center of the first circle)
with the center of the second circle and continue, the
resulting radius in the moving circle will form some
angle θ with the horizontal line. In this setting, the
parametric equations of epicycloid are given by the
formulas

x = (a+ b) cos θ − b cos
a+ b

b
θ,

y = (a+ b) sin θ − b sin
a+ b

b
θ.

equality The property of being equal to. Math-
ematically, equality means that certain quantity is
equal another. These quantities may contain num-
bers, variables, functions, and other mathematical
objects. If the equality holds for all values of given
parameters, then we have the case of identity. If the
equality is true for some values of that parameters
only, then we have the case of equation. Equations
are also called conditional equality. See correspond-
ing entries.

equation A statement that one quantity equals an-
other. Unlike identities, equations are not true for
all the values of variables that are involved in that
relationship and by that reason they are also called
conditional equality. To solve an equation means to
find all values of the variables or unknowns that make
that statement an identity. Depending on the type
of variables, the equations can be polynomial, ratio-
nal, trigonometric, radical, exponential, logarithmic,
and so on. In the case when the unknown quantity
is a function, then we can have a differential, integral
or integro-differential equation. There are also equa-
tions that contain matrices, vectors and other math-
ematical objects. The equations could be given both
in rectangular coordinates and also in polar, spherical
and other variables. Examples:
Polynomial: 3x3 − 2x2 + 4x− 5 = 0;
Exponential: 2x−1 − 4 = 0;
Trigonometric: sinx+ cosx = 1;
Logarithmic: ln(x2 − 1) + ln(x2 + 1) = 0;
Polar: r2 + sin θ = 0;
Differential: 2xy′′ + 3x2y′ − y = 0.
Some equations cannot be categorized because they
contain different kinds of functions, such as the equa-
tion 2x2 − 2x+1 + sinx = 0. These kind of equations
are called mixed. See also corresponding entries for
all the mentioned types of equations.

equilateral triangle A triangle that has all sides
equal in size. In equilateral triangles all three angles
are also equal in size and measure 60◦ (π/3 in radian
measure).

equilibrium point or position In Physics or
Mechanics the point or position where the system
reaches equilibrum. This means that after reaching
that point the system does no longer move unless
some outside force is applied.

equilibrum solution For autonomous differential
equations. When solving the equation y′ = f(y),
some solutions turn out to be constants, hence, do
not depend on time, and are called equilibrum. This
happens exactly at the roots of equation f(y) = 0
and these roots are called critical points.

equivalence A notion that has many manifesta-
tions in mathematics. In the most general and ab-
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stract form it could be defined as some kind of rela-
tion between elements of a set S that satisfies three
axioms for any elements a, b, c of that set. If we
denote that relation by ”◦”, then the axioms are:
1. (Reflexivity) a ◦ a
2. (Symmetry) if a ◦ b then b ◦ a
3. (Transitivity) if a ◦ b and b ◦ c then a ◦ c .
This way equality relation becomes equivalence, sim-
ilarity of triangles is equivalence as well as others.

equivalent equations Two equations that have
the same solution sets. Equations x2−5x−6 = 0 and
(x+ 1)(x− 6) = 0 are equivalent, because they have
the same solutions x = −1, 6. The term is usually
used for equations of the same type, but equations of
different nature can be equivalent too. The equation
2x− 1 = 1 is algebraic and log2 x = 0 is logarithmic,
and they are equivalent because they have the same
solution x = 1.

equivalent inequalities Two inequalities that
have the same solution sets. Inequalities x2−5x−6 >
0 and (x+ 1)(x− 6) > 0 are equivalent, because they
have the same solution set.

equivalent matrices Or row-equivalent matrices.
If a matrix could be transformed to another matrix
by a finite number of elementary row operations, then
the matrices are called equivalent.

equivalent system Two systems of equations that
have the same solution sets. See also equivalent equa-
tions

equivalent vectors Two vectors that have the
same direction and length.

error Any time an exact value (of a number, func-
tion, series, integral, etc.) is substituted by an ap-
proximate value, an error occurs. Errors could be
estimated in absolute terms (such as the difference
between exact and approximate values) or in relative
terms (as a proportion of error to the exact value).
For different specific error estimates see the entries
following this one on error estimates of series and in-
tegrals.

error estimate for alternating series Assume
that the series

∑∞
n=1 an is alternating and is conver-

gent. Denote by S its sum and by SN its Nth partial
sum. Then |S − SN | < |aN+1|. See also alternating
series test and alternating series estimation theorem.

error estimate for the Midpoint rule Assume
that we wish to calculate numerically the integral∫ b
a
f(x)dx using the Midpoint rule and denote by

Mn the nth approximation using that rule. Then,
if |f ′′(x)| ≤M for all a ≤ x ≤ b, then∣∣∣∣∣

∫ b

a

f(x)dx− Tn

∣∣∣∣∣ ≤ M(b− a)3

24n2
.

This estimate is very similar to the estimate for the
Trapezoidal rule.

error estimate for Simpson’s rule Assume
that we wish to calculate numerically the integral∫ b
a
f(x)dx using the Simpson’s rule and denote by

Sn the nth approximation using that rule. Then, if
|f (4)(x)| ≤M for all a ≤ x ≤ b, then∣∣∣∣∣

∫ b

a

f(x)dx− Sn

∣∣∣∣∣ ≤ M(b− a)5

180n4
.

error estimate for the Trapezoidal rule As-
sume that we wish to calculate numerically the inte-

gral
∫ b
a
f(x)dx using the Trapezoidal rule and denote

by Tn the nth approximation using that rule. Then,
if |f ′′(x)| ≤M for all a ≤ x ≤ b, then∣∣∣∣∣

∫ b

a

f(x)dx− Tn

∣∣∣∣∣ ≤ M(b− a)3

12n2
.

This estimate is very similar to the estimate for the
Midpoint rule.

estimate of the sum of a series The sums of
most of the series are difficult or even impossible to
calculate. Estimates serve as a substitute for exact
value and are good enough if the error is small. See
also error estimate for alternating series.

Euclidean distance Distance, generated
by the Euclidean norm. For two vectors
x = (x1, x2, · · · , xn),y = (y1, y2, · · · , yn) in Eu-
clidean space, their distance is defined to be the
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norm of their difference: dist(x, y) = ||x− y||.

Euclidean inner product For two vectors in
the Euclidean space x = (x1, x2, · · · , xn), and
y = (y1, y2, · · · , yn), the quantity

x · y = x1y1 + x2y2 + · · ·+ xnyn.

It is the same as dot product. See also scalar product.

Euclidean norm For a vector x = (x1, x2, · · · , xn)
in Euclidean space the number ||x|| = (x21+x22+ · · ·+
x2n)1/2. This number is non-negative and it is zero if
and only if the vector is the zero vector. Also called
magnitude or length of the vector.

Euclidean space The vector space of all vectors
with n coordinates, where the addition and scalar
multiplication operations are defined in the usual
way:

u + v = (u1 + v1, u2 + v2, · · · , un + vn),

αu = (αu1, αun, · · · , αun)

for any two vectors u,v and any real number α. Ad-
ditionally, the inner product is defined in this space
as the dot product (or, which is the same, Euclidean
inner product). This, on its turn, induces the norm
in the space, which defines Euclidean distance. This
special vector space is now called Euclidean space and
is commonly denoted by Rn, where n is any positive
integer.

Euler’s constant The limit

γ = lim
n→∞

(1 +
1

2
+

1

3
+ · · ·+ 1

n
− lnn),

which exists and is finite. The value of γ is approxi-
mately 0.577212 but it is not known if the number is
rational or not. See also harmonic series.

Euler equation See Cauchy-Euler equation.

Euler’s formula The formula

eiθ = cos θ + i sin θ,

where i =
√
−1 is the imaginary unit. This formula

is true also when the real number θ is substituted by
any complex number z. In the particular case when

θ = π, we get the famous formula eiπ = −1 which
connects all the fundamental numbers of mathemat-
ics.

Euler method For approximation of solutions of
initial value problems. The idea behind this method
is to substitute the solutions of the problem (which
usually are difficult or even impossible to find) by a
linear function, which is the tangent line to this so-
lution at some point. By this reason the method is
also called tangent line method. In detail, assume we
are solving the problem

y′ = f(t, y) y(t0) = y0

in some interval. As a first approximation we tale the
linear function

y = y0 + f(t0, y0)(t− t0)

which passes through the point (t0, y0) and hence,
coincides with the solution at that particular point.
Next, we choose a point t1 not too far from t0 to
assure that the error is small and construct another
line

y = y1 + f(t1, y1)(t− t1),

where y1 = y0 + f(t0, y0)(t1 − t0), is the value found
from the first line. Proceeding this way, we will have
a series of equations

y = yn + f(tn, yn)(t− tn),

each of which is given on the interval [tn, tn+1]. These
approximate solutions converge to the exact solution
when the lengths of intervals approach zero and un-
der certain conditions on function f .

Euler-Fourier formulas Also called Fourier for-
mulas. These formulas represent Fourier coefficients
of the function by certain integral formulas involving
the function itself. Let f(x) be defined on some in-
terval [−L,L]. Then its Fourier coefficients are given
by

an =
1

L

∫ L

−L
f(x) sin

nπx

L
dx, n = 0, 1, 2...

bn =
1

L

∫ L

−L
f(x) cos

nπx

L
dx, n = 1, 2, 3...
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evaluation The term is used in mathematics
in different situations, most commonly when we
want to find the value of a function. In this case, to
evaluate a function means to find its value for certain
value of the independent variable(s). Example: To
evaluate the function f(x) = 3x4 − 2x2 + x − 4 at
the point x = 2 means to calculate the value of f at
that point: f(2) = 3 · 24 − 2 · 22 + 2− 4 = 38.

even function A function f(x) of real variable,
that satisfies the condition f(−x) = f(x). This
condition means that the graph of the function is
symmetric with respect to the y-axes. The functions
f(x) = cosx and f(x) = x2 are examples of even
functions.

even permutations A permutation that is the re-
sult of even number of transpositions.

event A term used in Probability theory and
Statistics to indicate some kind of outcome for the
(usually random) variable. Tossing a coin and getting
Tail or Head are two different events. If an event can-
not be split into any smaller events, then it is called
simple event. The collection of all simple events forms
the event space. Events can be dependent, indepen-
dent, mutually exclusive. See corresponding entries
for more information.

exact equations Let M(x, y) and N(x, y) be func-
tions on some rectangle R = [a, b] × [c, d]. The first
order ordinary differential equation

M(x, y) +N(x, y)y′ = 0

is called exact, if there exists a differentiable function

F (x, y) on R, such that

∂F

∂x
= M,

∂F

∂y
= N. (1)

Every solution of this equation is given by the implicit
function F (x, y) = c, c = constant. The necessary
and sufficient condition for the equation being exact
is

My(x, y) = Nx(x, y). (2)

Example: To solve the equation (3x2 − 2xy+ 2)dx+
(6y2 − x2 + 3)dy = 0 we first easily check that the
above conditions are satisfied. Next, to find the func-
tion F we integrate the first of equations (1) with
respect to the variable x and get

F (x, y) =

∫
(3x2 − 2xy + 2)dx

= x3 − x2y + 2x+ g(y),

where g(y) is an arbitrary function of the variable y.
To satisfy the second of the equations (1) we differen-
tiate this function by y and equate it to the function
N :

−x2 + g′(y) = 6y2 − x2 + 3,

from where, g′(y) = 6y2 + 3, or g(y) = 2y3 + 3y (no
need of arbitrary constant). Finally, solution of the
equation will be given by the implicit equation

F (x, y) = x3 − x2y + 2x+ 2y3 + 3y = C.

existence and uniqueness theorems For differ-
ential equations. Statements, that contain conditions
under which the given differential equation has a solu-
tion and that solution is unique. Depending on type
of equation (order, coefficients, homogeneous or not,
boundary or initial conditions, etc) the existence and
uniqueness conditions differ from each other. For ex-
ample, if the equation is of the first order, then one
boundary or initial condition is usually enough, while
for the second order equations at least two conditions
are necessary. Similar observations are valid for sys-
tems of equations too. Example:
Theorem. Assume we have the equation

y′′ + p(t)y′ + q(t)y = g(t)
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with initial conditions y(t0) = y0, y
′(t0) = y′0 where

all the functions p, q and g are continuous on some
interval I, containing point t0. Then there exists ex-
actly one solution y = φ(t) of this problem and the
solution exists on all the interval I.

expanded form A term used in various situations.
For a polynomial p(x) = (x− 2)(x+ 5) the expanded
form will be p(x) = x2 + 3x − 10. The term is used
also for determinants, when expanded form means
the form when it is expanded as a sum of cofactors
or minors.

expansion by minors One of the methods of cal-
culating the value of a determinant. See correspond-
ing entry.

expansion operator A linear operator that ”ex-
pands” given vector. In the most general setting, an
expansion operator with factor k > 0 is a operator
that makes the norm of a vector x be equal k||x||.
Example: Operator given by a matrix(

k 0
0 k

)
transforms any vector (x, y) into vector k(x, y). See
also contraction operator, dilation operator.

expected value For a distribution, given by the
function f(x), the quantity

µ =

∫ ∞
−∞

xf(x)dx,

if it is finite. Expected value is the same as the mean
of the distribution. This quantity could be defined
also for distributions of several variables.

experimental study In statistics, a study where
the researcher controls, modifies, or changes the con-
ditions in order to collect data of the results and ef-
fects of these changes. Most of the medical studies
are experiments to assess the results of treatment or
medication.

explanatory variable In statistics, another name
for the independent variable.

exponential decay A functional model that is ex-

pressed with the use of exponential function with neg-
ative exponent:

f(t) = Aekt, k < 0.

Many economic, biological and other phenomena
have exponential decay model.

exponential function The function f(x) = ax,
where a > 0, a 6= 1, which is defined for all real
values of x. The range of the function is (0,∞).

exponential growth A functional model that is
expressed with the use of exponential function with
positive exponent:

f(t) = Aekt, k > 0.

Many economic, biological and other phenomena
have exponential growth.

exponential order Functions that have growth or
decay comparable with the growth or decay of the ex-
ponential function. The sinhx and coshx functions
both have exponential order. See hyperbolic func-
tions.

exponentiation One of the main mathematical
operations. The exponent of a number b, b > 0
(called base) of some power x is denoted by bx. In
the case when x is a natural number, this expression
is understood as the number b multiplied by itself x
times: bx = b · b · · · b. For exponents other than nat-
ural numbers, this definition is extended in several
steps.
(1) By definition b0 = 1 for any b > 0.
(2) If n is a positive integer, then b−n = 1/bn by def-
inition.
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(3) For positive integers n, we define the exponent
b1/n to be the nth root of the number b, i.e. that
is a number that raised to the nth power (which is
natural) results in b: ( n

√
b)n = b.

(4) For any integers n and m the exponent bn/m is
defined to be the number ( m

√
b)n = m

√
bn.

(5) To define the exponent bx for irrational number
x we use limiting process: This power is defined as
the limit

bx = lim
n→∞

bcn ,

where {cn} is some sequence of rational numbers that
approaches x.
In definition of exponents we usually avoid the case
b = 1 because it results in trivial case. From this
definition the following important properties of ex-
ponentiation follow:
(a) an · am = an+m

(b) (an)m = an·m

(c) (ab)n = an · bn
(d) an/am = an−m.
See also exponential function

exponents at the singularity In differential
equations. When solving an equation by the power
series method and the point is regular singular point,
the roots of the corresponding indicial equation are
called exponents at the singularity.

expression In mathematics, any combination of
mathematical objects (numbers, functions, matrices,
transformations, etc.) and operations on them. See
also algebraic expression and arithmetic expression.

extraneous root or solution In solving certain
types of equations, some roots, that turn out invalid.
This happens in solving rational, radical, logarith-
mic, and some other types of equations. Example:
The equation √

2x+ 7− x = 2

has two solutions, x = 1, x = −3 and the second one
is extraneous.

extrapolation A procedure of finding values of
functions or data based on some known values of the
function or given data. Similar to the notion of in-
terpolation. The least square regression line is an
example of extrapolation when we predict the values

of the data based on a sample data.

extreme value Maximum or minimum values of a
function.

extreme value theorem If f(x) is a continuous
function on the closed interval [a, b], then there exist
points c, d ∈ [a, b] such that f(c) is the minimum
and f(d) is the maximum values of f on [a, b].
A very similar statement is true also for functions of
two or more variables.

extremum Collective name for minimum and
maximum.
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F

F-distribution The distribution of the ratio of
variances of two normally distributed populations.
This distribution depends on both degrees of freedom
of that normal distributions, hence there is not one
but a family of F-distributions.

factor If a number or function a is written as a
product a = b ·c, then the numbers or functions b and
c are called factors. A number or function may have
more than two factors. The most common functions
we factor are polynomials. See also factoring.

factor tree Assume we need to factor a natural
number into the product of prime factors. Then, by
the fundamental theorem of arithmetic, the number
n could be written as a product pk11 · p

k2
2 · · · pkmm .

Another way of writing this product is to let it
expand vertically, and the resulting presentation is
called factor tree. Example: 84 = 22 · 3 · 7 could be
written also as a factor tree

factorial of a whole number n ≥ 1 is defined to be
the product 1 ·2 ·3 · · ·n, denoted by n!. By definition,
0! = 1.

factoring (1) The procedure of representing a
number as a product of factors. Example: 24 = 3 · 8.
See also prime factorization. (2) The procedure of
representing a polynomial as a product of simpler
polynomials. Example: 2x2+5x−12 = (2x−3)(x+4).

family of functions The term is used in cases
when instead of one particular function a group (or

collection) of functions is present. This fact is usually
indicated by the presence of one or more parameters.
By changing these parameter we get new functions,
which, as a rule, do not change the nature of func-
tions. Examples: (1) The family of functions Ax2+B
depends on two parameters and by changing the val-
ues of A and B we get different functions but all of
them are quadratic. (2) When integrating the func-
tion cosx the result is sinx + C, which is a family
of functions depending on one parameter. Change of
C creates a new function but it is still a sinusoidal
function.

family of solutions When solving differential
equations the solution usually depends on one or
more parameters creating a family of solutions. To
have a particular solution to a given equation it is
necessary to impose certain restrictions on function,
called initial or boundary conditions. See also initial
value problems, boundary value problems.

feasible solution Any solution of a linear pro-
gramming problem (a system of linear inequalities)
is called feasible solution. The set of all feasible so-
lutions is the feasible region. As a rule, the feasible
region is some kind of (possibly infinite) polygon.

Fermat’s theorem Let the function f(x) be de-
fined on the interval [a, b]. Assume that in some point
c inside that interval the function gets its maximum
or minimum value. If the function is differentiable at
that point, then f ′(c) = 0.

Fermat’s Last Theorem If n > 2 is an inte-
ger, there are no positive integers x, y, z such that
xn + yn = zn.
This statement more properly should have been
called conjecture, because Fermat did not prove it. It
was proven more than 300 years later, in mid 1990s
by A.Wiles.

Fibonacci sequence (numbers) The sequence
of numbers defined by the following rule: First
two terms of the sequence are ones. Ev-
ery other term is the sum of the previous
two terms. First few Fibonacci numbers are:
1, 1, 2, 3, 5, 8, 13, 21, 34, . . ..

field (1) A set of numbers where two algebraic oper-
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ations of addition and multiplication are defined and
satisfy standard rules (axioms) of that operations. In
particular, both operations are commutative and as-
sociative and together they follow distributive rule.
The most common numeric fields are the fields of ra-
tional numbers, real numbers and complex numbers.
The set of integers (or positive integers) is not a field,
because reciprocals are not integers.
(2) More precisely, vector field. This notion is de-
fined for vectors on the plane, space, or even higher
dimensional spaces. For exact definition see vector
field and for specific vector fields see also conserva-
tive vector field, gradient vector field, curl of a vector
field.

finite dimensional vector space A vector space
that has only finitely many linearly independent vec-
tors. See dimension of vector space.

first derivative test Let f(x) be defined on some
interval [a, b] and in some inner point c, a < c <
b, f ′(c) = 0. (1) If f ′(x) > 0 for c − δ < x < c and
f ′(x) < 0 for c < x < c + δ, then f has local maxi-
mum at point c. (2) If f ′(x) < 0 for c − δ < x < c
and f ′(x) > 0 for c < x < c + δ, then f has local
minimum at point c. (3) If f(x) does not change the
sign while passing through point c, then the test can-
not give definitive result.

first order differential equation Any differential
equation that contains only the first derivative of the
unknown function. Depending on the other compo-
nents of the equation is classified as linear, nonlinear,
with constant or variable coefficients, and also some
others. A typical first order linear equation with vari-
able coefficients is

y′ + p(t)y = g(t),

because the function y is present in the first degree
only and the coefficients p, q are functions, not con-
stants. For specific equations of first degree see exact
equations,Bernoulli equation, separable equations.

five number summary In statistics. The five
numbers for some data set are the minimum value,
the maximum value, the median, and the first and
third quartiles. These five numbers are important for
construction of the boxplot.

fixed point of a function Any point x = a in the
domain of some function f that satisfies the equation
f(a) = a. If the function is viewed as a mapping, then
the fixed points are the ones that do not move during
the mapping f . Not all functions have fixed points
and other functions may have more than one fixed
point. Examples: The function f(x) = ex does not
have any fixed points because the equation ex = x
has no solutions. The function f(x) = x2 +x− 4 has
two fixed points x = ±2, which are the solutions of
the equation x2 + x− 4 = x.

flux Let F be a continuous vector field defined on
an oriented surface S with unit normal n. Then the
surface integral of F over the surface S

∫ ∫
S

F · n dS

is called the flux of F across S.

focus of a conic section All three major conic
sections have one (parabola) or two (ellipse and hy-
perbola) points that are important in geometric defi-
nitions of that conic sections. For the definitions and
details see ellipse, hyperbola, parabola and also eccen-
tricity. Plural for the word focus is foci.

foil method of multiplication of two binomials. To
multiply (a + b)(c + d), we multiply (F) first terms
a · c, (O) outside terms a · d, (I) inside terms b · c, (L)
last terms b · d, and add them up:

(a+ b)(c+ d) = ac+ ad+ bc+ bd.

folium of Descartes A plane curve given by the
cubic equation x3 + y3 = 3axy, where a is some real
parameter. This curve has a slant asymptote given
by the equation x+ y + a = 0.
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force One of the most important notions in
Physics. By the Newton’s second Law, if an object of
mass m moves along a line with the position function
s(t), then the force on the object is the product of
the mass and its acceleration:

F = m
d2s

dt2
.

forced vibrations When the vibration of a spring
or a pendulum is affected by some additional force
F (t), then this vibration obeys the following differ-
ential equation:

m
d2x

dt2
+ c

dx

dt
+ kx = F (t).

formula An equation that contains two or more
variables. As a rule, a formula is deduced to cal-
culate values of one variable if the values of other
variable(s) are known. Elementary formulas in most
cases are interchangeable in a sense that they could
be solved for any other variable. This is not true for
more complicated formulas. Here are a few familiar
formulas from geometry and algebra. See correspond-
ing entries for more details.
Area of a rectangle: A = `× w.
Compound interest: P = A(1 + r/n)nt.
Distance formula:

d =
√

(x1 − x2)2 + (y1 − y2)2.

four-leafed rose The plane curve, given by polar

equation r = a sin 2θ, a > 0. The curve is called
so because it consists of four loops. It is a special
case of more general family of polar curves given by
the equations r = a sinnθ, r = a cosnθ, where n is
an arbitrary integer. The graph shows the equation
r = sin 2θ.

Fourier coefficients (1) In the Fourier series

a0/2 +

∞∑
n=1

(an cosnθ + bn sinnθ)

the coefficients an, n ≥ 0 and bn, n ≥ 1.
(2) In a more general setting, if the function f(x) is
defined on interval [0, 1], r(x) is some weight func-
tion, and φ1(x), φ2(x), · · · , φn(x) is an orthonormal
set, then the numbers

ak =

∫ 1

0

f(x)φi(x)r(x)dx, i = 1, 2, ..., n,

are the Fourier coefficients of f .

Fourier series For the given integrable function
f(x) on the interval [0, 2π], the formal series

f(x) = a0/2 +

∞∑
n=1

(an cosnθ + bn sinnθ),

where the coefficients are defined by the formulas

an =
1

π

∫ π

−π
f(x) cosnxdx, n = 0, 1, 2, ...
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bn =
1

π

∫ π

−π
f(x) sinnxdx, n = 1, 2, 3...

Fourier series of a function converges to that function
if it satisfies certain conditions, e.g., if it is differen-
tiable. Also called trigonometric series.

fraction Any real number that could be written
in the form n

m , where n and m are arbitrary real
numbers with only one condition that m 6= 0. In
the particular case when n and m are integers frac-
tions are called rational numbers. For operations with
fractions see addition and subtraction of fractions,
multiplication of fractions, division of fractions. See
also complex fractions and partial fractions for spe-
cial types of fractions.

frequency For trigonometric functions f(x) =
a sinωt and g(x) = a cosωt, the number ω/2π is the
frequency. This number shows how many times the
functions complete one full cycle when we move the
distance equal to 2π. The reciprocal to the frequency
is the period of the function.

Fresnel functions The functions

S(x) =

∫ x

0

sin t2dt

and

C(x) =

∫ x

0

cos t2dt.

The integrals on the interval [0,∞) are both conver-
gent and are equal to

√
π/8.

Frobenius method The method of solving linear
differential equations near a regular singular point.
See the entry series solution for the details.

Fubini’s theorem In its most general form this
theorem gives conditions on function of several vari-
ables which allow to calculate multiple integrals as it-
erated integrals. In the simplest form the theorem for
double integrals is formulated as follows: Let f be a
continuous function on the rectangle R = {(x, y)|a ≤
x ≤ b, c ≤ y ≤ d}. Then

∫ ∫
R

f(x, y)dA =

∫ b

a

[∫ d

c

f(x, y)dx

]
dy

=

∫ d

c

[∫ b

a

f(x, y)dy

]
dx.

Similar formulas hold also for triple or multiple inte-
grals.

function One of the most important mathematical
objects. In order to define a function it is necessary
first of all to have two sets associated with the func-
tion called the domain and the range. Then we can
formally define the function as some relation (map-
ping, transformation) that translates each element of
the domain to exactly one element of the range. If
the requirement of having exactly one corresponding
element in the range is removed, then instead of func-
tion we have a relation. Functions can be represented
in many different ways.
1) The first, least common form of representation is
the verbal representation. As an example we can de-
scribe a function as follows: The function translates
each value of the variable to its double.
2) The function can be represented also numer-
ically, by a table, matrix, chart, etc. For ex-
ample, if the domain of the function is the set
{1, 2, 3, 4, 5} and the range is {6, 9, 13, 17} then the
function can be given as a list of ordered pairs:
{(1, 6), (2, 9), (3, 17), (4, 9), (5, 13)}, meaning that the
function translates the point 1 to the point 6, point
2 to the point 9, etc.
3) The function can have graphical representation
when instead of numeric values just the graph is given
from where the numeric values may be found. This
method of representing functions is not very accu-
rate.
4) The most important form of representation of func-
tions is the algebraic (often also called analytic) form,
when an explicit formula is given from which the val-
ues of the function can be calculated. The functions
represented algebraically, usually written with func-
tion notation, which simplifies the process of finding
the values at a given point. For example, if a func-
tion given with the notation f(x) = 2x2−3, then the
value of the function at the point x = −2.7 will be
found by substituting this value for x : f(−2.7) =
2(−2.7)2 − 3 = 11.58.
Functions given algebraically are further categorized
as algebraic and transcendental. On their turn, alge-
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braic functions have subcategories of polynomial, ra-
tional, radical functions and the transcendental func-
tions can be exponential, logarithmic, trigonometric
and others. For specific examples see the correspond-
ing entries.
Further, functions could be increasing, decreasing,
even, odd, one-to-one, periodic, continuous, differ-
entiable, integrable and of many other types.
5) Functions can be represented as series, such as
power series or Fourier series. For example, the ra-
tional function f(x) = 1/(1 − x) on interval (−1, 1)
could be represented as

1

1− x
=

∞∑
n=0

xn.

Similarly, we have a Fourier series representation on
interval (0, π)

π − x
2

=

∞∑
n=1

sinnx

n
.

6) Functions could be represented also with integrals.
Laplace transform is the most common example of
integral representations of functions.

The notion of the function could be extended also
to the case of two, three or, more generally, n vari-
ables. Also, functions can be vectors themselves, or
be vector-valued. For specific types of function see
also Bessel functions, harmonic functions, implicit
functions.

fundamental matrix spaces For a matrix A, the
collective name of the following four spaces: Row
space of A, column space of A, the nullspace of A,
and the nullspace of the transpose of the matrix AT .

fundamental solutions In the most general set-
ting, a (generalized) function φ is called the funda-
mental solution of the partial differential operator L,
if it satisfies the equation Lφ = δ, where δ is the Dirac
function. For specific partial differential equations we
have the following expressions for fundamental solu-
tions:
Heat conduction equation:

a2uxx = ut, 0 < x < M, t > 0

un(x, t) = e−n
2π2a2t/M2

sin
nπx

M
, n ≥ 1.

The wave equation:

a2uxx = utt, 0 < x < M, t > 0

un(x, t) = sin
nπx

M
cos

nπat

M
, n ≥ 1.

Laplace’s equation:

uxx + uyy = 0, 0 < x < a, 0 < y < b

un(x, t) = sinh
nπx

b
sin

nπat

b
, n ≥ 1.

fundamental theorem of algebra If p(x) is a
polynomial of degree n > 0, then the correspond-
ing polynomial equation has at least one solution in
the field of complex numbers.
As a result of this theorem it follows that any poly-
nomial of degree n > 0 has exactly n roots (real or
complex), if we count the roots with their multiplic-
ities.

fundamental theorem of arithmetic Any posi-
tive integer n could be factored in a product of pow-
ers of prime numbers: n = pk11 · p

k2
2 · · · pkmm . This

presentation is unique except possible order of prime
factors. Example: 2520 = 23 · 32 · 5 · 7.

fundamental theorem of calculus Let f be a
Riemann integrable function on the interval [a, b] and
let F be the indefinite integral (antiderivative) of the
function f on (a, b) : F ′(x) = f(x). Then∫ b

a

f(x)dx = F (b)− F (a).

This theorem allows to calculate definite integrals
without elaborate process of partitioning the inter-
vals, constructing Riemann sums and passing to the
limit. It also combines two main branches of calcu-
lus: the differential calculus and integral calculus.
Example: Since (sinx)′ = cosx,∫ π

0

cosxdx = sinπ − sin 0 = 0.

fundamental trigonometric identities The
identities

cotx =
1

tanx
, secx =

1

cosx
, cscx =

1

sinx



57

and

tanx =
sinx

cosx
, cotx =

cosx

sinx
.

See also Pythagorean identities, cofunction identi-
ties,addition and subtraction formulas, double-angle,
half-angle formulas, sum-to-product, product-to-sum
formulas.

G

gamma function For the real positive variable x,
the function defined by the formula

Γ(x) =

∫ ∞
0

tx−1e−tdt.

This function is the generalization of the factorial in
the sense that Γ(n + 1) = n!. Gamma function can
also be defined for complex values of argument.

Gaussian elimination One of the most effective
methods of solving systems of linear algebraic equa-
tions. The idea of the method consists of eliminating
more and more variables in successive equations, and
to arrive to the situation, when the last equation has
only one unknown. This will allow to find the value of
that variable and substitute in the previous equation
that has only two variables, hence finding the value
of the second unknown. Continuing this back substi-
tution, we will be able to solve the system. During
this process, only elementary row operations are per-
formed, which guarantees, that the resulting system
is equivalent to the original one, i.e., has the same
solution set. Also, the procedure may be applied di-
rectly to the system of equations or the corresponding
augmented matrix. We will demonstrate the second
approach. Let

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

an1x1 + an2x2 + · · ·+ annxn = bn

be our system of n equations with n variables
x1, x2, · · · , xn and let

a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
...

...
an1 an2 . . . ann bn


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be the corresponding augmented matrix. First, we
divide first row by a11 and get 1 in the first position
of the first row. Next, we multiply first row by −a21
and add to the second row, to get zero on the first
position of the second row. After dividing second row
by a22−a12a21/a1, we will have the following format

1 a′12 . . . a′1n b′1
0 1 . . . a′2n b′2

...
...

...
...

an1 an2 . . . ann bn


Now, continuing, we can eliminate first element of
the third row by using the first row, second element
of the third row by using the second row, and then
dividing by the value of the resulting third element,
we will make it one. As a final result we will find the
matrix in upper triangular form, with all entries on
the diagonal being 1’s:

1 a′12 . . . a′1n b′1
0 1 . . . a′2n b′2
...

...
...

...
0 0 . . . 1 b′n


This triangular matrix corresponds to triangular sys-
tem of equations, that is solved by the back substitu-
tion method. This same method works also for more
general case of m× n systems but does not result in
unique solution.
Example: To solve the system of equations

2x+ y − 4z = 3

x− 2y + 3z = 4

−3x+ 4y − z = −2

we form its augmented matrix 2 1 −4 3
1 −2 3 4
−3 4 −1 −2

 .

As the first step we interchange first and second
rows to get a 1 on the left upper corner (notation:
R1 ↔ R2), then multiply first row by -2 and add to
the second row (−2R1+R2 → R2) to get 0 on the left

column of the second row. Similarly, doing the oper-
ation 3R1 +R3 → R3 will eliminate the first entry on
the third row. Now, the matrix has the form 1 −2 3 4

0 5 −10 −5
0 −2 8 10

 .

On the next two steps we multiply second row by 1/5
and the third row by -1/3 to get 1’s in the middle
column. Finally, after doing the operations −R2 +
R3 → R3 and multiplying the last row by -1/2, we
arrive to  1 −2 3 4

0 1 −2 −1
0 0 1 2

 .

This matrix corresponds to the system of equations

x− 2y + 3z = 4

y − 2z = −1

z = 2,

which could be solved by back substitution method
and gives the solution set (4, 3, 1).

Gauss-Jordan elimination The development of
Gaussian elimination method. Here, the method
does not stop at triangular matrix but makes it diago-
nal. Assume, that as a result of Gaussian elimination,
our augmented matrix is reduced to the following one:

1 a12 . . . a1n b1
0 1 . . . a2n b2
...

...
...

...
0 0 . . . an−1n bn−1
0 0 . . . 1 bn


Now, if we multiply the last row by −an−1n and add
it to the previous row, the nth term of that row will
become zero. The only non-zero elements of that row
will remain the (n − 1)st element (which is on the
diagonal and equals one) and the last entry, which
will be equal now bn−1 − an−1nbn. Next, using both
bottom rows, we can eliminate two elements on the
(n − 2)nd row, except the diagonal element (equals
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one) and the (n+ 1)st entry. Continuing this way up
we eventually arrive to the matrix

1 0 . . . 0 b′1
0 1 . . . 0 b′2
...

...
...

...
0 0 . . . 0 b′n−1
0 0 . . . 1 bn

 ,

which, in turn, is equivalent to the system of equa-
tions

x1 = b′1, x2 = b′2, · · · , xn−1 = b′n−1, xn = bn.

Hence, this last system provides the solution imme-
diately.
As an example we will continue solution of the system
from the previous entry. To solve the system

2x+ y − 4z = 3

x− 2y + 3z = 4

−3x+ 4y − z = −2

we apply the Gaussian elimination method and ar-
rive to the matrix 1 −2 3 4

0 1 −2 −1
0 0 1 2

 .

Continuing by the Gauss-Jordan method, we first do
the operation 2R3+R2 → R2 to eliminate third entry
on the second row and then the operation −3R3 +
R1 → R1 eliminating the third entry on the first row.
The result is the matrix 1 −2 0 −2

0 1 0 3
0 0 1 2

 .

On the last step we add two times row two to the
first row and finally 1 0 0 4

0 1 0 3
0 0 1 2


which corresponds to the system

x = 4, y = 3, z = 2,

already solved for all variables.

general multiplication rule for probabilities
Let A and B be two events, not necessarily indepen-
dent. Then the multiplication rule for probabilities
generalizes as follows:

P (A ∩B) = P (A) · P (B|A),

where P (B|A) is the conditional probability of the
event B given A. Another notation for this rule is
P (A and B) = P (A) · P (B|A).

general solution of linear equations For differ-
ential equations. Let Lf(x) be some linear differ-
ential operator. The general solution of the equation
Lf(x) = g(x) is the solution that presents all possible
solutions of that equation. Hence, general solution is
not a function but a family of functions, depending
on some numeric parameters. If the equation is of the
nth degree, then, as a rule, there are n parameters in
this family of functions. For linear equations of any
degree, the general solution of the non-homogeneous
equation Lf(x) = g(x) is the sum of the general solu-
tion of the homogeneous equation Lf(x) = 0 and any
particular solution of the original equation. Similar
definition and facts are true also for systems of linear
equations.

general solution of trigonometric equations
The solution of any trigonometric equation that pro-
vides all possible answers. Example: The equation

cos 4x sinx = 0

splits into two equations sinx = 0 and
cos 4x = 0. The first one has the general solu-
tion x = πn, n = 0,±1,±2... and the second one
gives x = π/8 + πn/4, n = 0,±1,±2... All the solu-
tions of the original equation are described by the set
S = {x|x = πn, x = π/8 + πn/4, n = 0,±1,±2...}.

general term An expression used in various
situations. Most commonly is used for polynomials
to indicate the term ajx

j with some j = 0, 1, 2, ...

generators of the cone See the definition of the
cone.
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geometric distribution One of the probability
distributions, where the probability that k trials are
needed to get one success is

P (X = k) = (1− p)k−1p

and p is the probability of success on each trial.

geometric mean For given set of n ≥ 1 non-
negative numbers, the quantity

n
√
a1 · a2 · · · an.

geometric sequence or progression A sequence
of real numbers (finite or infinite), where the ratio of
each term (starting from the second) to the previous
term is the same constant. The general term of these
sequences is given by the formula

an = a1r
n−1,

where a1 is the first term of the sequence and r is the
ratio of the sequence.

geometric series A series
∑∞
n=1 an, where the

terms form a geometric sequence. If the ratio r of
that sequence satisfies |r| < 1, then the series is con-
vergent and the sum is given by the formula

∞∑
n=1

an =
a1

1− r
.

For an arbitrary ratio r, the partial sums of the se-
ries are given by the formula (m ≥ 1 is an arbitrary
integer)

m∑
n=1

an =
a1(1− rm)

1− r
.

golden ratio Two numbers, a and b, form the
golden ratio, if the ratio of the larger number to
smaller, say a/b, is equal to the ratio of their sum
to the larger number (a + b)/b. Simple calculations
show that the exact value of that ratio is (1 +

√
5)/2,

which is approximately 1.618033988...

golden ratio rectangle A rectangle, where the
length and width form the golden ration, i.e., l/w =
(l + w)/l = (1 +

√
5)/2.

gradient For a function f of several real variables,

the gradient is a vector, which coordinates are the
partial derivatives of the function:

5f(x1, x2, · · · , xn) = (
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn
).

The gradient vector points to the direction of largest
growth of the function.

gradient vector field For functions of three vari-
ables. Let f = f(x, y, z) be a scalar function of three
variables. Then the gradient of the function written
in the vector form

5f(x, y, z) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

is called gradient vector field. Similar definition is
valid for functions of any number of independent vari-
ables. See also curl of a vector field, divergence of a
vector field.

Gram-Schmidt process A method of orthonor-
malization of a basis of a vector space. Suppose
{v1,v2, · · · ,vn} is a basis of the vector space V . We
start with any vector of the system, say v1 and call it
u1 To get the second vector, we take v2 and subtract
from it its projection on the vector v1:

u2 = v2 − proju1v2.

This vector is orthogonal to u1. In the next step, we
take the third vector in our basis and subtract from
it its projections on first two vectors:

u3 = v3 − proju1v3 − proju2v3.

The vector u3 is now orthogonal to both u1 and u2.
Continuing this process, we get a new system of vec-
tors {u1,u2, · · · ,un}, which is orthogonal. In the
last step of this process we just normalize this last
system by dividing each of the vectors by their length
(magnitude, norm). The new system

w1 =
u1

||u1||
,w2 =

u2

||u2||
, · · · ,wn =

un

||un||

is now orthonormal, because each vector has length
one.
The Gram-Schmidt process works also for infinite
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bases.

graph of an equation Let y = f(x) be some
equation defined on an arbitrary interval [a, b]
(finite or infinite). The graph of the equation is
the geometric place of all points (x, f(x)) on the
Cartesian plane, when the variable x varies over
its interval of existence. Every graph represents
some kind of curve, depending on the nature of the
equation. Graphs are helpful visual representations
of equations.

graph of a function Let y = f(x) be some
function defined on an arbitrary interval [a, b] (finite
or infinite). The graph of the function is the geo-
metric place of all points (x, f(x)) on the Cartesian
plane, when the variable x varies over its interval
of existence. Every graph represents some kind of
curve, depending on the nature of the function f .
The difference between the graph of a function and
the graph of an equation is that for the function
to each point on the interval [a, b] there is only
one corresponding point on the plane. Graphs are
helpful visual representations of functions.

greater than An inequality, stating that one
quantity is greater than the other, with notation
A > B. If the quantities are real numbers, then this
statement means that A is to the right of B on the
number line. See also less than.

greater than or equal to An inequality, stating
that one quantity is greater than the other, or equal
to it, with notation A ≥ B. If the quantities are real
numbers, then this statement means that A is to
the right of B on the number line, or the two points
coincide. See also less than or equal to.

greatest common factor (GCF) For two pos-
itive integers m and n, the largest integer, that
divides both of that numbers, denoted by gcf(m,n).
Example: gcf(12, 18) = 6. Also called greatest
common divisor (GCD).

greatest integer function For the given real
number x the function [[x]] is defined to be the
greatest integer such that n ≤ x. This function
has jump discontinuity at each integer point and is
constant for all values between two integers.

greatest lower bound Also called infimum. If a
function f or a sequence an are bounded below, then
”biggest” of all possible lower bounds is the greatest
lower bound. Example: The sequence an = 1+1/n is
bounded below by any number M ≤ 1 but not by any
number greater than 1. The number 1 is the greatest
lower bound. See also least upper bound.

Green’s identity Let u(x, y) and v(x, y) be two
times continuously differentiable functions in the
finitely simple region D with the boundary C. De-
note by dA the area measure in D, by ds the arc
measure on C and by n the unit outer normal to the
boundary C. Then∫ ∫

D

(u∆v − v∆u)dA =

∫
C

(u
∂v

∂n
− v ∂u

∂n
)ds.

Here ∆ denotes the Laplace operator.

Green’s identity Let M(x, y) and N(x, y) be con-
tinuously differentiable functions in the finitely sim-
ple region D and let C be the boundary of D. Then∫

C

Mdx +Ndy =

∫ ∫
D

(
∂N

∂x
− ∂M

∂y
)dxdy.

This theorem is one of the possible generalizations
of the Fundamental Theorem of Calculus to double
integrals, because it allows to calculate integrals over
plane domains as line integrals over the boundaries
of that domains.

grouping symbols The symbols ( ),[ ],{ } and
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sometimes others, that are used to group numbers,
functions, expressions, etc. Primarily are used to in-
dicate and determine the order of operations to be
performed. In many cases some other symbols also
play the role of grouping symbols. For example, in
expressions 5 + |3 − 6| − 4 or 3 −

√
4 + 5 the opera-

tions inside the absolute value and square root signs
should be done before any other operations.

growth rate Also could be called rate of growth.
For a given variable quantity s(t) the rate with which
it grows. Mathematically it is the same as the deriva-
tive, i.e., growth rate of s is s′(t).

H

half-angle formulas In trigonometry, the formu-
las

cos2
θ

2
=

1 + cos θ

2

sin2 θ

2
=

1− cos θ

2

tan
θ

2
=

1− cos θ

sin θ
=

sin θ

1 + cos θ
.

Similar formulas exist for other trigonometric func-
tions but are rarely used.

half-life The period of time required for a quan-
tity (usually a radioactive material) to reduce to its
half. If the initial amount of the quantity is A0, then
the amount at the time t is given by A(t) = A0e

−λt.
Half-life depends on material (and is reflected in con-
stant λ) and can vary from a few seconds to many
thousand years.

half-open intervals Intervals of the form [a, b) or
(a, b], where a and b are any real numbers. Notation
means that one of the ends of the interval is included
and the other one is not.

half-plane One of the four possible configurations
on the Cartesian plane: {(x, y)|x > 0}, {(x, y)|x <
0}, {(x, y)|y > 0}, {(x, y)|y < 0}. More generally,
the solution of a linear inequality ax + by < c (or
other three alternative forms of that inequality in-
volving the symbols >, ≥, or ≤), where a, b, c are
real numbers.

half space In three dimensional Euclidean space,
the solution of any inequality of the form Ax+By+
Cz < D (or other three alternative forms of that in-
equality), where A,B,C,D are real numbers. This is
the same, as to say that half space is the set of all
points, that lie on one side of some plane. This notion
is possible to extend to higher dimensional spaces.

harmonic function Any function u of two or more
variables in a given domain, that satisfies Laplace’s
equation. In the case of two variables the equation
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has the form

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
= 0.

harmonic motion or simple harmonic motion.
Describes the periodic movement of some object
about the equilibrium point that can be given by one
of the following equations:

s(t) = a cosωt, s(t) = a sinωt.

Here s is the displacement of the object at the time
t, a is the amplitude of motion and ω/2π is the fre-
quency of oscillation.

harmonic series The numeric series

∞∑
n=1

1

n
.

This series is divergent and according to Euler’s for-
mula, its partial sums go to infinity as the natural
logarithmic function.

heat conduction equation In Partial Differential
Equations: for a function of two spacial variables
x, y, and the time variable t, the equation

∂u(x, y, t)

∂t
=
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2
.

In the simpler case of one spacial variable x and time
variable t the equation has the form a2uxx = ut.

Heaviside function The function

f(x) =
{

1 if x ≥ 0
0 if x < 0

This function plays important role in physics and
electrical engineering. See also Laplace transforms
of special functions.

helicoid A 3-dimensional surface given by the
equations

x = r cos t, y = r sin t, z = αt,

where both r and α range from −∞ to ∞. For any
fixed values of that parameters, helicoid becomes a

helix.

helix A curve in 3-dimensional space given by the
equations

x = cos t, y = sin t, z = t.

Here t is a real parameter. As it increases, the point
(x, y, z) traces a helix about the z-axis.

Heron’s formula For the area of a triangle with
the sides, equal to a, b and c. Denote s = (a+b+c)/2.
Then the area A is given by the formula

A =
√
s(s− a)(s− b)(s− c).

higher order derivatives Since the derivative of
a function is also a function, we can calculate the
derivative of that function. If it exists, then that will
be the second derivative of the function:

f ′′(x) = (f ′(x))′ =
d2f

dx2
.

Similarly, the third derivative, f ′′′(x) = d3f
dx3 , the
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fourth, f (4)(x) = f iv(x) = d4f
dx4 , and the nth deriva-

tive f (n)(x) = dnf
dxn are defined, if they exist.

Hilbert space A linear vector space, equipped
with inner product and the notion of distance asso-
ciated with that inner product. The term almost ex-
clusively applies to infinite dimensional vector spaces.

histogram In statistics, a histogram is a graphical
display of frequencies. A histogram is the graphi-
cal version of a table which shows what proportion
of cases fall into each of several specified categories.
The histogram differs from a bar chart in that it is
the area of the bar that denotes the value, not the
height. The categories are usually specified as non-
overlapping intervals of some variable. Another dif-
ference between histograms and bar graphs is that
the bars in histograms are adjacent, not separated as
for bar graphs.

homogeneous algebraic equations Systems of
linear algebraic equations, where all of the right sides
are zero. Homogeneous systems are always consis-
tent, because they always have the trivial solution
(i.e. all zero solution). Homogeneous systems may
have also non-trivial solutions, if any of the equations
is a linear combination of multiple other equations.

homogeneous differential equation A differen-
tial equation where only the unknown function and
its derivatives are present, possibly multiplied by
some (variable or constant) coefficients. Examples:

The equation

y′′(t) + p(t)y′(t) + q(t)y(t) = 0

is homogeneous, but the equation

y′(t)− 2y(t) = 3x2

is not. In this last case equation is called non-
homogeneous.
Homogeneous equations are also classified by their
order (first, second,etc.), by the type of coefficients
(constant or variable), by linearity and so on. In
cases when we have several equations with several
unknown functions, we get system of homogeneous
equations.

Hooke’s law In physics, this law states that the
force necessary to hold a spring stretched x units be-
yond the equilibrium point is proportional to the dis-
placement x, if its small. Symbolically, f(x) = kx,
where k is a positive number called spring constant.

horizontal asymptote See asymptote.

horizontal axis The x-axis in Cartesian coordi-
nate system. It is given by the equation y = 0.

horizontal line A line, that is parallel to the x-
axis in Cartesian coordinate system. Any horizontal
line is given by the equation y = a, where a is any
real number.

horizontal line test If a function f(x) is given
graphically, and any horizontal line intersects that
graph only once, then the function is one-to-one. If
even at one point this condition is violated then the
function cannot be one-to-one. This test allows to
determine if the given function has an inverse or not
but is not accurate.

hyperbola One of the three main conic sections.
Geometrically, a hyperbola is the location (locus) of
all points in a plane, the difference of whose dis-
tances from two fixed points in the plane is a positive
constant. The two points, from which we measure
distances, are called foci (plural for focus). Equiva-
lently, the hyperbola could be described as the result
of cutting double cone by a plane parallel to its axis.
Hyperbola is a smooth curve with two branches. Al-
ternative geometric definition could be given with the
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use of eccentricity. See corresponding definition.
Algebraically, the general equation of a hyperbola is
given by the equation Ax2 +Bxy+Cy2 +Dx+Ey+
F = 0, where A, B, C, D, E, F are real constants
and A ·C < 0. In the case, when the foci are located
on one of the coordinate axes and center coincides
with the origin, this equation could be transformed
into standard form

x2

a2
− y2

b2
= 1,

where the constants a, b have special meaning:
c =
√
a2 − b2 is the distance from origin to a focus.

Moreover, the intersection points of hyperbola with
one of the axes are called vertices of hyperbola and
their distance from origin is equal to a. The line
connecting two foci is called transverse axis and
the perpendicular line (passing trough origin) is the
conjugate axis. Each hyperbola of this form has
two slant asymptotes given by the formulas y = ± b

ax.

In the more general case,when the center of hyperbola
is located at some point (h, k) but the transverse and
conjugate axes still parallel to coordinate axes, the
standard equation becomes

(x− h)2

a2
− (y − k)2

b2
= 1,

and the equations of the slant asymptotes are y =
k± b

a (x− h). In all cases the eccentricity is given by
the formula e = c/a.
Both of the above cases happen when in the general
equation the term Bxy is missing. In the case B 6= 0
the result is still a hyperbola which is the result of
rotation of one of the previous simpler cases about
the center of hyperbola.
The hyperbola could also be given by its polar equa-
tion:

r =
de

1± e cos θ
or r =

de

1± e sin θ
,

where d > 0 and e > 1 is the eccentricity of the
hyperbola.

hyperbolic functions The functions

sinhx =
ex − e−x

2
, coshx =

ex + e−x

2
,

tanhx =
ex − e−x

ex + e−x
, cothx =

ex + e−x

ex − e−x
,

Hyperbolic secant and cosecant functions are defined
as reciprocals of hyperbolic cosine and sine functions,
respectively. The sinhx and coshx functions are the
most used with a very limited use for other four hy-
perbolic functions.

hyperbolic identities Identities for hyperbolic
functions, analogous to corresponding trigonometric
identities. Here the equivalent of the Pythagorean
identity is the following:

cosh2 x− sinh2 x = 1.

Another example is the formula

sinh(x+ y) = sinhx cosh y + coshx sinh y.

hyperbolic paraboloid The three dimensional
surface given by the formula

x2

a2
− y2

b2
=
z

c
.

hyperbolic substitution A method of calculation
of indefinite integrals, when the independent variable
is substituted by one of the hyperbolic functions.
Substitutions are used to evaluate indefinite integrals
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when ready to use formulas are not available. See also
trigonometric substitutions and substitution method.

hyperboloid (1) Hyperboloid of one sheet is given
by the formula

x2

a2
+
y2

b2
− z2

c2
= 1

and represents a surface that is connected.
(2) Hyperboloid of two sheets is given by

x2

a2
− y2

b2
− z2

c2
= 1

and consists of two pieces.

hypersphere Usually, the name of the n-
dimensional sphere given by the equation
x21 + x22 + · · · + x2n = r2, where r is the ra-
dius.

hypervolume Usually, volume in n-dimensional
Euclidean space.

hypocycloid Geometrically, a curve that is traced
by a point on a circle that rolls inside a bigger cir-
cle. Depending on ratio of radiuses of the circles, the
result is a different curve. If that ratio is 1/4, the re-
sult is called astroid (see picture above). In general, a
hypercycloid with n+ 1 cusps is given by parametric
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equations

x = cos θ +
1

n
cosnθ, y = sin θ − 1

n
sinnθ.

hypotenuse In the right triangle, the side, oppo-
site to the right angle. The other two sides are called
legs.

hypothesis A statement or proposition, which va-
lidity is not known but which is very likely to be
true based on experimental or theoretical observa-
tions. One of the best known is the so-called Rie-
mann hypothesis.

hypothesis testing In Statistics. the procedure of
testing a working assuption (hypothesis) using a set
of values from a sample. For details see null hypoth-
esis and alternative hypothesis.

I

identity (1) An equality, containing constants
and/or variables, that is true for all values of the
variables, whenever the expression makes sense. Ex-
amples are: (a+ b)2 = a2 +2ab+ b2, sin2 θ+cos2 θ =
1, 1 + tan2 x = sec2 x. The first two identities are
valid for all values of a, b or θ, and the last identity is
valid for all values of x 6= π/2+πk, k = 0,±1,±2, ...,
because the functions involved in the identity are
not defined for that values of argument. See also
trigonometric identities.
(2) A number, that added to other numbers or
multiplied by other numbers does not change them.
See additive identity, multiplicative identity.

identities, trigonometric See trigonometric
identities.

identity matrix The square matrix where all the
entries are zero except of the main diagonal, where
all the entries are ones. Example:

I =

 1 0 0
0 1 0
0 0 1


When we multiply the identity matrix by any other
matrix from the right or left, the given matrix does
not change: IA = AI = A.

identity function The function f(x) = x which
leaves each point in its place.

identity transformation A transformation T of a
vector space V that leaves all elements of the space
unchanged: For any v ∈ V , Tv = v. Also called
identity operator.

image of a linear transformation. If T : V →W is
a linear transformation from one vector space to an-
other, then for any vector u ∈ V the vector T (u) ∈W
is its image. The set of all images is called the image
of the transformation T .

imaginary axis The vertical axis in the complex
plane. When the complex plane is identified with the
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Cartesian plane, imaginary axis is the same as y-axis.

imaginary number A number of the form ai,
where a is a real number and i =

√
−1 is the imagi-

nary unit.

imaginary unit The number i =
√
−1. This num-

ber is not real, because i2 = −1. See also complex
numbers.

implicit differentiation When a function is given
implicitly (see implicit function), then it is still pos-
sible to calculate the derivative of that function. Let
the function is given by the equation F (x, y) = 0 and
assume that F has partial derivatives with respect to
both variables. In that case, we will be able to cal-
culate the derivative of y with respect to the variable
x if we view y as a function of x and use the chain
rule. Example: If the implicit function is given by
the equation

arctan y/x = x,

then differentiation by x gives

dy
dxx− y
x2 + y2

= 1

and, after the simplification,

dy

dx
=
x2 + y2 + y

x
,

which itself is an implicit function.

implicit function A function of two variables,
that is not explicitly solved for any of the vari-
ables. This relation can be expressed as an equation
F (x, y) = 0 with some function F . Examples are
x2 + y2 − 1 = 0, 2 sin3 x − 3xy = 0. Similar defini-
tion holds for functions of several variables too. Let
x1, · · · , xn, y be (n + 1) variables and F represents
some functions of that variables. Then the equa-
tion F (x1, · · · , xn, y) = 0 is an implicit function if
the equation is not solved for any of the variables.

Implicit Function Theorem gives conditions un-
der which a function defined implicitly, can be solved
for the dependent variable. We give the simplest ver-
sion for the case of two variables. Let F (x, y) = 0
be an implicit function defined on some disk, that

contains a point (a, b). Assume that F (a, b) =
0, ∂F

∂y (a, b) 6= 0, and both partial derivatives of
F are continuous on the disk. Then the equation
F (x, y) = 0 defines y as an explicit function of x near
the point (a, b) and the derivative of that function is
given by the formula

dy

dx
= −

(
∂F

∂x

)
/

(
∂F

∂y

)
.

Similar statements are valid for functions of three or
more variables also.

implicit solution A solution of an (usually differ-
ential) equation which is given as an implicit function
F (x, y) = 0.

implied domain When the domain of some func-
tion is not stated explicitly but is clear from the defi-
nition of the function, then it is said that the domain
is implied.

improper fraction A fraction, where the numer-
ator is greater than or is equal to the denominator.
Examples: 7

5 ,
25
25 .

improper integral An integral, where either one
or both integration limits are infinite, or the function
is unbounded on the bounded interval.
(1) Let the function f(x) be defined on the interval

[a,∞) and assume that the integral
∫ A
a
f(x)dx exists

for any given number A ≥ a. Then the limit of that
integral (finite or infinite) is the integral of f over the
interval [a,∞):∫ ∞

a

f(x)dx = lim
A→∞

∫ A

a

f(x)dx.

In case this limit is finite, the function is called inte-
grable on the given interval. The improper integrals
over the intervals (−∞, b] and (−∞,∞) are defined
similarly.
(2) Let f(x) be defined on a bounded interval [a, b]
but be unbounded there, for example, as we approach
the right endpoint b. Assume also, that on each inter-
val [a, b− δ] the function is bounded and the integral∫ b−δ
a

f(x)dx exists. Then the limit of that integral
(finite or infinite) is the integral of f over the inter-
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val [a, b]: ∫ b

a

f(x)dx = lim
δ→0

∫ b−δ

a

f(x)dx.

In case the limit is finite, the function is called in-
tegrable on the given interval. Improper integrals,
when the left end-point or some inside point of the
interval are the points where f is not bounded, are
defined in a similar manner.

improper integral comparison theorem For
improper integrals on infinite intervals.
Assume that f and g are continuous functions defined
on some interval [a,∞) and f(x) ≥ g(x) on that in-
terval.
(1) If

∫∞
a
f(x)dx is convergent, then

∫∞
a
g(x) dx

is convergent;
(2) If

∫∞
a
g(x)dx is divergent, then

∫∞
a
f(x) dx

is divergent.

impulse function Let g(t) be a function defined
for all real values t, with the condition that it is zero
outside some ”small” interval [t0− τ, t0 + τ ] and with
finite integral on that interval. These kind of func-
tions represent some type of impulse (mechanical,
electrical, or other) and its integral I(τ) =

∫∞
−∞ g(t)dt

is the total impulse of the force g(t). The limiting
case of these type of impulse functions as the interval
of its existence goes to zero, is the Dirac function.

impulse response Assume we have some differen-
tial equation. We can take the equation

ay′′ + by′ + c = g(t)

for an example. If in the right-hand side the function
g is the Dirac function δ(t), then the solution of this
equation is called impulse response (to the impulse
δ).

inconsistent linear system A system of linear
equations that has no solution. The system is consis-
tent, if it has at least one set of solutions. Example:
The system of equations

x− 2y = 5

2x− 4y = 3

is inconsistent because it has no solutions.

increasing/decreasing test Also called increas-
ing/decreasing theorem.
(1) If the function is defined on some interval I and
f ′(x) > 0 for all points on that interval, then the
function is increasing.
(2) If the function is defined on some interval I and
f ′(x) < 0 for all points on that interval, then the
function is decreasing.

increasing function The function f(x) defined on
some interval I is increasing, if for any two points
x1, x2 ∈ I, x1 < x2, we have f(x1) < f(x2).

increasing sequence A sequence of real numbers
{an}, n ≥ 1, is increasing, if am > ak whenever
m > k.

indefinite integral For a given function f(x) on
some interval, indefinite integral is any function F (x),
which derivative is that function:

F ′(x) = f(x).

In fact, indefinite integral is not one specific function,
but a family of functions. Along with F , any func-
tion of the form F (x) + C, where C is an arbitrary
constant, is also indefinite integral of f . For indef-
inite integral of a function f we have the notation∫
f(x)dx. Examples:∫

sinxdx = − cosx+ C,∫
dx√
a2 + x2

= ln(x+
√
a2 + x2) + C.

Indefinite integral is also called antiderivative.

indefinite matrix A square matrix for which the
expression xTAx takes both positive and negative
values. Here x is an arbitrary vector and xT is its
transpose. See also positive definite, negative defi-
nite matrices.

independence of path Let F be some vector field
in two or three dimensional space and assume that
some piecewise smooth curve (path) C is given by
the vector-function r(t). The integral∫

C

F · dr
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is said to be independent of path, if its value depends
on initial and terminal points of the path C only.
Theorem 1. The integral

∫
C

F · dr is independent of
path if and only if for any closed path C,

∫
C

F·dr = 0.
Additionally, the next theorem establishes when this
situation takes place.
Theorem 2. Suppose F is a continuous vector field in
some open connected region D. If

∫
C

F · dr is inde-
pendent of path in D, then F is a conservative vector
field, i.e., there exists a function f such that F = 5f.

independent events Two or more events are in-
dependent, if none of them affects the outcome of any
of the others. If A and B are the two events and P
denotes the probability, then the relation of indepen-
dence could be expressed in the form P (A and B) =
P (A)P (B), or, equivalently, P (A∩B) = P (A)P (B).
Independence could be extended also to three or more
events and the definition will be similar.

independent observations For an observation
independence has the same meaning as for an event.
Similarly, when collecting samples we get indepen-
dent samples if no one depends on any other collected
sample. See also simple random sample.

independent variable In an equation y = f(x)
the variable x. The variable y is called depen-
dent variable. A function of several variables
y = f(x1, x2, · · · , xn) has n independent variables
x1, x2, · · · , xn.

indeterminate forms of limits Let f(x), g(x)
be two functions defined around the point x = c (but
not necessarily at that point). When calculating the
limit

lim
x→c

f(x)

g(x)

it is possible that limx→c f(x), g(x) = 0 or
limx→c f(x), g(x) = ∞. In these cases we say that
the limit is indeterminate form 0/0 or ∞/∞ respec-
tively. Also we may have 0 · ∞ indeterminate form
while calculating the limit of the product of f and
g. In other situations, indeterminate forms ∞−∞,
1∞ and 00 also may arise. In many cases these limits
could be calculated by the l’Hospital rule.

index of summation In the sigma notation (or

summation notation) presentation of a finite or infi-
nite series

m∑
n=1

an

the parameter n. As a rule, index of summation takes
either integer or whole values.

indicial equation An algebraic equation, associ-
ated with some differential equations. This equations
come out in cases when we solve differential equation
by series method around regular singular point. Ex-
ample: Assume we have the equation

2x2y′′ − xy′ + (1 + x)y = 0.

The point x = 0 is a regular singular point and to
solve this equation we need to solve corresponding
indicial equation

2r(r − 1)− r + 1 = 0,

which produces two roots r = 1, 1/2. Now, two
solutions of the original equation are found by mul-
tiplying xr by certain power series:

y1 = x

[
1 +

∞∑
n=1

(−1)n2nxn

(2n+ 1)!

]
,

y2 = x1/2

[
1 +

∞∑
n=1

(−1)n2nxn

(2n)!

]
.

induction See mathematical induction.

induction hypothesis One of the steps in the
method of mathematical induction, when we assume
that certain statement is true for the value of the nat-
ural number k and then proceed to prove the state-
ment for the next integer k + 1.

inequality A statement that one quantity does not
equal another quantity. The statement could be
written in one of the following four possible forms:
A < B, A ≤ B, A > B, or A ≥ B. Se also quadratic
inequality.

inference, statistical See statistical inference.

infinite discontinuity A function is said to have
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infinite discontinuity at some point x = c, if one or
both of the left-hand or right-hand limits is either ∞
or −∞. The function may or may not be defined at
that point.

infinite interval An interval, where one or both
of the endpoints are infinite. The only three possi-
ble types of infinite intervals are (−∞, a), (b,∞) and
(−∞,∞).

infinite limit (1) A sequence of numbers has in-
finite limit if the members of the sequence grow in-
definitely. In precise definition, {an}, n = 1, 2, 3, ...,
has infinite limit, if for any given positive number M
there exists an integer N > 1, such that an ≥ M
whenever n ≥ N .
(2) A function f(x) has infinite limit at some point
x = c, if for any positive M , there exist δ > 0 such
that |f(x)| > M whenever |x− c| < δ. This last def-
inition requires modification if the point c is infinite.
In that case the definition is very similar to the defi-
nition of infinite sequence.

infinite non-repeating decimal A decimal rep-
resentation of a real number, where no one digit
or group of digits repeat. This kind of decimal
numbers cannot represent integers or rational num-
bers, so all of them are irrational. Well known ex-
amples are the decimal approximations of numbers√

2 = 1.414213562... and π = 3.141592654....

infinite repeating decimal A decimal represen-
tation of a real number, where one digit or a group
of digits repeat over and over again. Each repeating
infinite decimal represents a rational number. The
opposite is also true: each rational number can be
represented as a finite or repeating infinite decimal.
We use a bar over the group of repeating digits to
indicate the fact that they are repeating. Examples:
1
3 = 0.333.... = 0.3, 2

7 = 0.285714.

infinite sequence A sequence {an}, where the in-
dex n takes unbounded number of values (usually,
whole numbers or integers).

infinite series A series where infinitely many
terms are added. See also convergent series and di-
vergent series.

inflection point Let y = f(x) be a continuous
function on some interval. A point P on its graph is
called inflection point, if the graph changes its con-
cavity when we pass through that point. The func-
tion y = x3 has inflection point at x = 0, because to
the left of that point it is concave down and to the
right it is concave up.

influential observation Or influential point. In a
scatterplot one (or some) points are called influential,
if removing them results in a very different regression
line. Usually, all the points that are very far from the
majority of points in either horizontal or vertical di-
rection (or both) are influential.

initial conditions For ordinary differential equa-
tions. The conditions at the initial point to assure
that the equation has unique solution.

initial point If the ordinary differential equation is
given on some interval [a, b] (most commonly b =∞),
then the point a is called initial point.

initial point of vector A vector defined as di-
rected line interval, has two endpoints on this inter-
val. The point where the vector starts, is the initial
point. Because only the direction and length are im-
portant for a vector, we place the initial point at the
origin of the coordinate system.

initial side of angle Of two rays forming an angle
in standard position the one that coincides with the
positive x-axis. See also angle.

initial value problem Also called Cauchy prob-
lem. For ordinary differential equations. The equa-
tion along with conditions on solution at the initial
point. To solve initial value problem means to find
solution to the equation that also satisfies given con-
ditions at the initial point. Initial conditions are cho-
sen to assure uniqueness of the solution. Example:
The equation

y′′ + p(t)y′ + q(t)y = 0

for 0 ≤ t <∞, with conditions y(0) = 0 and y′(0) = 1
is an initial value problem.

inner product for vectors in real vector space is
defined as a real number satisfying the following con-
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ditions: Let x,y be two vectors. Then
(1) 〈x,y〉 = 〈y,x〉; (2) For any real a, 〈ax, y〉 =
a〈x, y〉; (3) 〈x,x〉 ≥ 0 and 〈x,x〉 = 0 if and only
if x = 0.
Inner product is also called scalar product. In the
special case when the space is the Euclidean space,
and the inner product is defined as the product of
coordinates of the vectors, then it is also called dot
product. Inner product for complex vector space is
defined in a similar manner but requires involvement
of complex numbers and some additional conditions.

instability of critical point For solutions of dif-
ferential equations. Let

dy

dt
= r

(
1− y

K

)
y

be the logistic equation. The functions y = K and
y = 0 are two constant solutions of this equation.
The other solutions of this equation with the initial
condition y(0) = y0 are given by the formula

y =
y0K

y0 + (K − y0)e−rt
. (1)

The first solution y = K is stable because all the so-
lutions (1) approach that solution as t→∞. On the
other hand the solution y = 0 is unstable because the
solutions (1) do not approach it. This solution is also
called unstable critical point.

instantaneous rate of change If a quantity is
changing during the time period [t1, t2], then the av-
erage rate of change is its net change divided by the
elapsed time t2 − t1. When the interval [t1, t2] is
getting smaller and smaller (eventually becoming a
single point), the resulting value is the instantaneous
rate of change of the quantity. This is one of the main
problems that helped to create differential calculus.

instantaneous velocity The instantaneous rate of
change for velocity.

integers The set of integers is the union of natural
(or counting) numbers {1, 2, 3, · · ·}, their opposites
{−1,−2,−3, · · ·} and the number 0.

integral One of the most important notions of cal-
culus. Has two main meanings. See definite integral

and indefinite integral for basic definitions. For in-
tegrals in other settings see also double integral, line
integral, surface integral and many other definitions
related to integrals and integration.

integral curves The graphical presentations of
general solutions of differential equations, that de-
pend on one or more integration constants.

integral equation An equation where the un-
known function appears under the integral sign. Two
most important types of integral equations are

f(x) =

∫ b

a

K(x, t)φ(t)dt

and

φ(x) = f(x) + λ

∫ b

a

K(x, t)φ(t)dt.

Here f and K are given known functions and φ is the
unknown one. These equations are called Fredholm
equations of the first and second type respectively.

integral test Gives convergence criteria for pos-
itive series. Assume we can find a positive, con-
tinuous, and decreasing function defined on interval
[1,∞), such that an = f(n). Then the series

∑∞
n=1 an

is convergent if and only if the integral
∫∞
1
f(x)dx is

convergent.

integral transform A transform which is given
with an integral formula. An integral transform has
the form

Tf(x) =

∫ b

a

K(x, t)f(t)dt,

where a and b are any numbers (including infinity)
and K(x, t) is some (usually integrable) function of
two variables, called kernel of integral transform. In
this formula the function f is regarded as a variable
or ”vector” and integral transforms are always linear.
One of the most common integral transforms is the
Laplace transform.

integrand The function which is getting inte-
grated. In expression∫

e−x
2

2 + x2
dx
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the function f(x) = e−x2

2+x2 is the integrand.

integrating factor Assume we have a general first
order linear differential equation

y′ + p(t)y = g(t)

with some given functions p and g. In order to find
the general solution of this equation, we multiply all
terms by some positive function µ(t), called integrat-
ing factor, which makes the left side equal to the
derivative of the function y(x)µ(x). This function
can be chosen to be equal µ(t) = exp

∫
p(t)dt and

the general solution of the equation is given now in
the form

y =
1

µ(t)

[∫ t

t0

µ(s)g(s)ds+ c

]
.

integration The procedure of calculating definite
or indefinite integrals. Unlike differentiation, where
the derivative of any analytically given function could
be found by applying differentiation rules, integra-
tion process is much harder and for many functions
there are no simple indefinite integrals. For different
methods of finding indefinite integrals see integration
by partial fractions, integration by parts, integration
by substitution, by trigonometric substitution, term-
by-term integration. For approximate integration of
definite integrals see approximate integration, numer-
ical integration, Simpson’s rule, trapezoidal rule.

integration by partial fractions A method of
integration of rational functions. Let f(x) =
P (x)/Q(x) be a proper rational function. Then it
could be decomposed into the sum of partial frac-
tions of one of the following forms:

A

(ax+ b)j
,

Ax+B

(ax2 + bx+ c)k
,

where in the second case the denominator is irre-
ducible over real numbers. Now, integration of the
integral

∫
f(x)dx is reduced to integration of simpler

fractions. Examples:∫
x− 3

x2 − 3x+ 2
dx =

∫ (
2

x− 1
− 1

x− 2

)
dx

= 2 ln |x− 1| − ln |x− 2|+ C.

∫
12

x4 − x3 − 2x2
dx

=

∫ (
3

x
− 6

x2
+

1

x− 2
− 4

x+ 1

)
dx

= 3 ln |x|+ 6

x
+ ln |x− 2| − 4 ln |x+ 1|+ C.

2

∫
x3 + 1

(x2 + 1)2
dx

= 2

∫ (
x

x2 + 1
− x

(x2 + 1)2
+

1

(x2 + 1)2

)
dx

= ln(x2 + 1) +
1

x2 + 1
+

x

x2 + 1
+ tan−1 x+ C.

integration by parts One of the integration meth-
ods. Let u and v be differentiable functions. Then∫

udv = uv −
∫
vdu

and the identical formula holds for the definite inte-
grals: ∫ b

a

udv = uv|ba −
∫ b

a

vdu.

This formula allows to calculate many integrals that
otherwise were impossible to handle. Example: With
u = lnx, v = x,∫

lnx dx = x lnx−
∫
dx = x lnx− x+ C.

integration by substitution One of the integra-
tion methods. Let f(x) and u = g(x) be two func-
tions an u be also differentiable. Then∫

f(g(x))g′(x) dx =

∫
f(u) du.

This formula allows to calculate certain integrals,
that have special form. Example: To calculate the
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integral
∫ √

2x+ 1 dx, we notice, that with substitu-
tion u = 2x+ 1, du = 2dx, and∫ √

2x+ 1 dx =
1

2

∫ √
udu

=
1

3
u3/2 + C =

1

3

√
2x+ 1 + C.

integration by trigonometric substitution A
method of evaluating integrals containing expressions
of the type

√
a2 ± x2. In that case the substitutions

x = a sin θ, x = a tan θ or x = a sec θ often result
in simpler integrals to evaluate. Examples: (1) To
evaluate the integral∫

dx

(
√

1− x2)3
,

we substitute x = sin θ, dx = cos θdθ and get∫
dx

(
√

1− x2)3
=

∫
cos θdθ

(cos θ)3
= tan θ + C,

and, returning to original variable, the answer trans-
fers to x/

√
1− x2 + C.

(2) To evaluate the integral
∫

1√
4+x2

dx, we use the

substitution x = 2 tan θ dx = 2 sec2 θdθ and see that
the integral is transformed to∫

sec θdθ = ln | sec θ + tan θ|+ C

= ln

(√
4 + x2

2
+
x

2

)
+ C.

integro-differential equation An equation,
where the unknown function is both integrated and
differentiated. Example:

φ′′(x) = f(x) +

∫ b

a

K(x, t)φ(t)dt,

where f and K are given functions and φ is to be
determined from this equation.

intercepts The intersections of the graph of a
function with the coordinate axes. For y = f(x),
the y-intercept is the point, when x = 0 and the
x-intercept(s) is the point, when y = 0. Example: To

find the y-intercept of the function y = x2 − 4x + 3,
we plug-in x = 0 and find y = 3 and the point is
(0, 6). To find the x-intercepts, we plug-in y = 0
and solve the equation x2 − 4x + 3 = 0, which has
solutions x = 1, 3 and the intercepts are (1, 0), (3, 0).

intermediate value theorem Let f(x) be a con-
tinuous function on the closed interval [a, b]. Assume
that L is a number between the values f(a) and f(b)
of the function at the endpoints. Then there exists at
least one point c such that a ≤ c ≤ b and f(c) = L.
This theorem helps sometimes to find the x-intercepts
of functions. For example, if f(a) < 0 and f(b) > 0
then the theorem means that there is at least one x-
intercept inside the interval [a, b].

interpolation If some points are given on the
plane, then any curve passing through that points
is called interpolating curve. If that curve rep-
resents the graph of some polynomial, then it
is called interpolating polynomial. In the most
general case we may fix some points of the
given function f creating a set of ordered pairs
{(x1, f(x1)), (x2, f(x2)), ..., (xn, f(xn))} and the in-
terpolating polynomial p(x) will represent an approx-
imation to the function f which additionally coin-
cides with given function at all prescribed points.
Depending on the degree of the polynomial the in-
terpolation will be linear, quadratic, cubic, etc. See
also extrapolation.

intersection A point where two curves coincide.
If the curves are given by equations y = f(x) and
y = g(x), then they intersect, if for some point
x = c, f(c) = g(c). When a curve intersects with one
of the coordinate axes, then the intersection point is
called intercept.

intersection of sets If A and B are two sets of
some objects, then their intersection A ∩ B is de-
fined to be the set of all elements that belong to
both A and B. Example: If A = {1, 2, 3, 4, 5, 7} and
B = {2, 4, 6, 8} then A ∩ B = {2, 4}. In case when
two sets have no common elements we say that their
intersection is the empty set.

interval A subset of the real line with the prop-
erty that for any two points in that subset, all the
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points between that two are also included. Intervals
could be closed (include both endpoints), open (do
not include endpoints), or half-open (include only one
of endpoints). The four possible configurations are:
[a, b], (a, b), [a, b), (a, b]. In this definition one or
both endpoints could be infinite. See infinite inter-
val.

interval of convergence For a power series

∞∑
n=0

an(x− c)n

the interval (c − r, c + r), where the seris converges.
The number r is called radius of convergence and may
be zero, some positive number, or infinity. Some se-
ries also converge at the endpoints, hence the interval
becomes closed. Example: The series

∞∑
n=1

xn

n

has the half-open interval [−1, 1) as its interval of con-
vergence, because when x = 1, it results in diverging
harmonic series and for x = −1 it is the converging
alternating harmonic series.

invariant Something, that does not change when
certain transformation is performed. Examples: For
the function f(x) = x2 the point x = 1 is invariant,
because f(1) = 1. For any linear transformation T in
any vector space V , the origin is invariant, because
T (0) = 0. In a more general setting, the area of a
plane geometric figure is invariant when we transform
this figure using only translation, rotation and reflec-
tion operations.

inverse function For function f(x) of one real
variable with domain D, the function g(x) is its in-
verse, if for all appropriate values of the variable

g(f(x)) = f(g(x)) = x.

The inverse of the function f is denoted by f−1.
Usual sufficient condition for existence of the in-
verse is the condition of being one-to-one. Fa-
miliar examples of pairs of inverses are: f(x) =
2x, f−1(x) = 1/2x; f(x) = x3, f−1(x) =

3
√
x; f(x) = 2x, f−1(x) = log2 x.

inverse Laplace transform The transformation,
that translates the Laplace transform of some func-
tion back to the same function. Symbolically,

L−1Lf(t) = f(t).

The inverse Laplace transform exists under certain
conditions on the original function and is unique. An-
alytically it is given by a formula involving complex
variable integration. A list of inverse Laplace formu-
las could be deduced from direct Laplace transform
formulas working backwards. See the corresponding
entry.

inverse matrix For a given square matrix A the
matrix B, that satisfies the conditions AB = BA =
I, where I is the identity matrix. Inverse matrix is
denoted by A−1 and it exists if and only if the deter-
minant of the matrix A is not zero. There is a simple
formula for calculation of inverses of 2 × 2 matrices.
If

A =

(
a b
c d

)
is the given matrix, then

A−1 =
1

ad− bc

(
d −b
−c a

)
.

For general n×n matrices the inversion formula uses
cofactors and is given by

A−1 =
1

det(A)
(Cij)

T ,

where (Cij)
T is the transpose of the matrix where ele-

ment on ij−th position is the corresponding cofactor.
This formula is very hard to use in practice, so in-
stead a version of Gauss-Jordan elimination method
is used. Example: If

A =

 1 2 2
2 3 3
3 4 5

 ,

we form a 3× 6 matrix by adjoining the identity ma-
trix to A:  1 2 2 1 0 0

2 3 3 0 1 0
3 4 5 0 0 1


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and apply Gauss-Jordan method. The result will be
another 3× 6 matrix 1 0 0 −3 2 0

0 1 0 1 1 −1
0 0 1 1 −2 1


and the right half of this matrix is the inverse of the
given matrix A:

A−1 =

−3 2 0
1 1 −1
1 −2 1

 .

inverse transformation Let T : V → W be a
linear transformation from one linear vector space
to another. The inverse of this transformation, de-
noted by T−1, is another linear transformation (if
it exists), that transforms W to V and satisfies the
conditions T ◦ T−1 = T−1 ◦ T = I, where I is the
identity transformation and ”◦” denotes composition
of transformations. Sufficient condition of existence
of the inverse transformation is that T be one-to-one
transformation.

inverse trigonometric functions See arcsine,
arccosine and arctangent functions.

inverse variation The name of many possible re-
lations between two variables. The most common
are:(1) y varies inversely with x means that there is a
real number k 6= 0, such that y = k/x; (2) y varies in-
versely with x2 means y = k/x2; (3) y varies inversely
with x3 means y = k/x3. There are many other pos-
sibilities but rarely used. Compare also with direct
variation and joint variation.

inversion (1) The procedure of finding the inverse
of a given object: number, function, matrix, etc.
(2) In a permutation, whenever a larger number pre-
cedes a smaller one, we call it an inversion. See also
transposition.

invertible matrix A matrix such that the inverse
matrix exists.

involute A parametric curve given by the equa-
tions

x = r(cos θ + θ sin θ), y = r(sin θ − θ cos θ).

irrational number Any real number that is not
rational. Irrational numbers cannot be written
as fractions, as terminating decimals or as non-
terminating, repeating decimals. Common examples
of irrational numbers are

√
2, π, e.

irreducible polynomial The polynomial is irre-
ducible over a number field, if it cannot be factored
into linear factors with coefficients from that field.
A polynomial which is irreducible over some number
field, may be reducible over other number field.

(1) The polynomial x2−2 is irreducible over the field
of rational numbers, but it is reducible over the field
of real numbers because x2 − 2 = (x−

√
2)(x+

√
2).

(2) The polynomial x2+4 is irreducible over rationals
and reals but it is reducible over complex numbers
because x2 + 4 = (x+ 2i)(x−2i). By the Fundamen-
tal Theorem of Algebra, any polynomial with rational
coefficients is reducible over the field of complex num-
bers.

irregular singular point For differential equa-
tions. Consider the equation

P (x)y′′ +Q(x)y′ +R(x)y = 0

and its power series solutions. If for the point x =
x0, P (x0) 6= 0, then that point is called ordinary and
series solution is possible near that point. If P (x0) =
0, then the point is singular. Additionally, the series
solution is still possible if the singular point is regular,
which means that the limits

lim
x→x0

(x− x0)
Q(x)

P (x)
and lim

x→x0

(x− x0)2
R(x)

P (x)

are finite. If any of these conditions is violated, then
the point x0 is called irregular singular point.

irrotational vector field A vector field F is
called irrotational at some point P , if at that point
curlF = 0.

isobars A contour line of equal or constant pres-
sure on a graph.

isosceles triangle A triangle that has two equal
sides. Isosceles triangles necessarily also have two
equal angles.
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iterate In the process of successive approximation,
the result on each intermediate step is called iterate.

iterated integral Let f(x, y) be a function defined
on some rectangle R = [a, b] × [c, d]. We may inte-
grate this function with respect of the second variable
and get a new function of one variable

F (x) =

∫ d

c

f(x, y)dy.

Now, if we integrate this resulting function with rex-
pect to the first variable, then we will get∫ b

a

F (x)dx =

∫ b

a

[∫ d

c

f(x, y)dy

]
dx.

The integral on the right side is called iterated
integral. Similar definitions hold for functions of
three or more variables. Fubini’s theorem uses
iterated integral in calculations of multiple integrals.

J

Jacobian Assume that the variables x, y, z are
expressed with the help of other three variables
u, v, w and the change of variable functions x =
x(u, v, w), y = y(u, v, w), z = z(u, v, w) are continu-
ously differentiable. Then the matrix

J =


∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w


is called the Jacobian matrix of the transformation.
The importance of this matrix is that the determi-
nant of J plays important role in calculating integrals
by change of variable. The following theorem holds:
Let the function f(x, y, z) be defined and integrable
in some region G and let the change of variable for-
mulas x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)
transform G to some other region G′. Then∫ ∫ ∫

G

f(x, y, z) dxdydz

=

∫ ∫ ∫
G′
f(u, v, w) det(J) dudvdw.

joint variation The name of many possible rela-
tions between three or more variables. The most com-
mon are:(1) z varies directly with x and y means that
there is a real number k 6= 0, such that z = kxy; (2)
z varies directly with x and inversely with y means
z = k xy ; (3) z varies directly with x2 and inversely

with y means z = k x
2

y . There are many other pos-
sibilities including more variables. See also inverse
variation and direct variation.

Jordan curve Let I = [a, b] be an interval and the
functions x = f(t) and y = g(t) are defined on that
interval. These equations define a plane parametric
curve. This curve is called Jordan curve if: (1) The
functions f, g are continuous; (2) the curve is closed,
meaning that f(a) = f(b), g(a) = g(b); (3) The curve
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is simple, i.e. f(t1) 6= f(t2) except the endpoints, and
similarly g(t1) 6= g(t2).
Jordan curves in the space are defined in the same
way.

Jordan decomposition See Jordan form of ma-
trix.

Jordan domain A plane region that is bounded
by a Jordan curve.

Jordan form of matrix A block-diagonal square
matrix, that could be written in the form

J1 0 . . . 0
0 J2 . . . 0
...

...
...

0 0 . . . Jn

 ,

where each Jk is itself a square matrix. The diag-
onal elements of this block-matrix are all the same,
the sub-diagonal consists of all 1’s, and all the other
elements of the matrix are zeros:

J =


λk 0 . . . 0 0
1 λk . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 λk


The entries on diagonal are the eigenvalues of the ma-
trix. These type of matrices are called simple Jordan
matrix. Every square matrix is similar to a matrix
of the Jordan form.

jump discontinuity A function f(x) is said to
have jump disconinuity at some point x = c, if both
left-hand and right-hand limits of the function at that
point exist, but are not equal:

lim
x→c+

f(x) = a, lim
x→c−

f(x) = b, a 6= b.

The Heaviside function is an example of a function
with jump discontinuity at point 0.

K

Kepler’s laws of planetary motion:
(1) Every planet revolves around the Sun in an ellip-
tical orbit with the Sun at one focus.
(2) The line joining the Sun and a planet sweeps out
equal areas in equal time.
(3) The square of the period of revolution of a planet
is proportional to the cube of the length of the major
axis of its orbit.

kernel of convolution In the convolution integral

(K ∗ f)(x) =

∫ ∞
−∞

f(t)K(x− t)dt

the function K, if we consider f as a parameter.

kernel of integral transform In the integral
transform

Tf(x) =

∫ b

a

K(x, t)f(t)dt,

the function K(x, y). Transforms vary, depending on
the nature of the kernel. We get the most common
Fourier and Laplace transforms, when the kernel is
equal to eixy and e−xy respectively.

kernel of linear transformation Let T be a lin-
ear transformation from one vector space V to an-
other, W . The set of all vectors x ∈ V , such that
Tx = 0 is the kernel of the transformation. The ker-
nel is in fact a subspace of V : if u, v belong to the ker-
nel then for any constants α and β the vector αu+βv
also belongs to the kernel. The dimension of the ker-
nel is called nullity.

Kronecker’s symbol Also called Kronecker delta.
A function of two discrete parameters i, j, given by
the formula

δij =

{
1 if i = j
0 if i 6= j

.

The parameters i and j are chosen, as a rule, to be
integers or whole numbers.
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L

Lagrange’s identity Consider the Sturm-
Liouville boundary value problem

[p(x)y′]′ − q(x)y + λr(x)y = 0

with boundary conditions

α1y(0) + α2y
′(0) = 0, β1y(1) + β2y

′(1) = 0

and denote L[y] = −[p(x)y′]′ + q(x)y. Then La-
grange’s identity is true:∫ 1

0

{L[u]v − uL[v]}dx = 0.

Lagrange multiplier Assume that the function
f(x, y, z) is given in some domain D and is differen-
tiable there. If we want to find the extreme values of
this function subject to the constraint g(x, y, z) = k
(or, otherwise, on the level surface g(x, y, z) = k),
then the gradients of both functions f and g are par-
allel at all extreme points, and hence, there is a real
number λ such that 5f = λ 5 g. The constant λ
is the Lagrange multiplier. In cases when we wish
to find the extreme values of a function subject to
two or more constraints, we will have two or more
Lagrange multipliers. For the procedure of finding
extreme values with the use of Lagrange multipliers
see method of Lagrange multipliers.

Laguerre equation The second order differential
equation

xy′′ + (1− x)y′ + λy = 0.

In the case when λ = m, a positive integer, the solu-
tions are polynomials, known as Laguerre polynomi-
als. See also Chebyshev equation.

lamina A 2 dimensional planar closed surface with
mass and density.

Laplace operator For a function f(x, y, z) of three
variables, which is two times differentiable by all vari-
ables, the expression

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

Equivalent notation 52f is also used. See also har-
monic functions and Laplace’s equation.

Laplace transform A special type of integral
transform, where the kernel is the function K(s, t) =
e−st. Formally, the Laplace transform of a function
on the interval [0,∞) is given by

Lf(s) =

∫ ∞
0

e−stf(t)dt.

Laplace transform of a function can exist even if the
function itself is not integrable on [0,∞). In fact, for
the existence of the Laplace transform of a function
f it is enough that this function be piecewise contin-
uous on any finite interval [0, N ] and have a growth
no more than exponential function: |f(t)| ≤ keat for
sufficiently large values of its argument.
Here is a list of Laplace transforms of some common
functions, where on the left is the function and on
the right is its transform:

1
1

s
, s > 0

eat
1

s− a
, s > a

tp, p > −1,
Γ(p+ 1)

sp+1
, s > 0

sin at,
a

s2 + a2
, s > 0

cos at,
s

s2 + a2
, s > 0

sinh at,
a

s2 − a2
, s > 0

cosh at,
s

s2 − a2
, s > 0

One of the most important properties of the Laplace
transform (and some other integral transforms), is
that it allows to substitute certain complicated op-
erations by a simpler ones. For example, the con-
volution of two functions is substituted by multipli-
cation (see corresponding article) and the operation
of differentiation could be substituted by the oper-
ation of multiplication by the independent variable.
More precisely, let f(t) be a piecewise differentiable
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function on any interval 0 ≤ t ≤ A and satisfy the in-
equality |f(t)| ≤ Keat for t ≥ M , where K, a,M are
some positive constants. Then the Laplace transform
of f ′ exists for s > a and is given by

Lf ′(s) = sLf(s)− f(0).

Under similar conditions, we have also a formula for
Laplace transform of higher degree derivatives of the
function:

Lf (n)(s) = snLf(s)

−sn−1f(0)− · · · − sf (n−2)(0)− f (n−1)(0).

These properties are crucial in applications of Laplace
transform in solving initial value problems.

Laplace transform method For solving initial
value problems for linear non-homogeneous differen-
tial equations. The method is especially important in
cases when the right side of the equation is discontin-
uous because the other methods (undetermined coef-
ficients, variation of parameters, series solutions) are
almost never successful in that case. Example: Solve
the equation

y′′ + 4y = g(t)

with the initial conditions y(0) = 0, y′(0) = 0 and
the function g(t) defined to be 0 on the interval [0, 5)
and (t−5)/5 on [5, 10) and 1 on [10,∞). This function
could be written as

g(t) = [u5(t)(t− 5)− u10(t)(t− 10)]/5,

where the function uc(t) is defined below in the article
Laplace transforms of special functions. Applying the
Laplace transform to both sides of the equation, using
the initial conditions, and denoting Ly = Y (s), we
get

(s2 + 4)Y (s) =
e−5s − e−10s

5s2
.

Making notation K(s) = 1/s2(s2 + 4) we will get

Y (s) =
e−5s − e−10s

5
K(s).

Now, using the partial fraction decomposition of the
function K we find its inverse Laplace transform to
be the function k(t) = t/4 − 1/8 sin 2t. Finally, the

use of theorems about inversions of Laplace trans-
forms of step functions (see the next article again)
gives us the final solution

y =
1

5
[u5(t)k(t− 5)− u10(t)k(t− 10)].

Laplace transforms of special functions (1)
Let uc(t) be the unit step function (generalization
of the Heaviside function) defined by

f(x) =
{

1 if x ≥ c
0 if x < c

.

Then

L[uc(t)] =
e−cs

s
, s > 0.

In the special case c = 0(Heaviside function) the
transform is just 1/s.
(2) If F (s) = L[f(t)] exists for some s > a ≥ 0, then

L[uc(t)f(t− c)] = e−csF (s), s > a.

(3) If the function f is periodic with period T , then

L[f(t)] =

∫ T
0
e−stf(t)dt

1− e−sT
.

Laplace’s equation In partial differential equa-
tions. In the simplest case of two variables, the equa-
tion

∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2
= 0.

Solutions to this equation are called harmonic func-
tions.

latent roots The same as roots of characteristic
equation or eigenvalues.

Law of Cosines Let α, β, γ denote the (measures
of) angles of some triangle ABC and denote by a
(the size of) the side, opposite to α, by b– the side
opposite to angle β and by c the third side (opposite
to γ). Then the following three relationships connect
these six quantities:
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a2 = b2 + c2 − 2bc cosα,

b2 = a2 + c2 − 2ac cosβ,

c2 = a2 + b2 − 2ab cos γ.

Low of Cosines generalizes Pythagorean theorem, be-
cause when one of the angles is a right angle, then the
corresponding cosine is zero and the formula reduces
to Pythagorean. This law is used to solve oblique
(not right) triangles.

Law of large numbers In probability and statis-
tics, this law states that if we chose large number of
samples from any given distribution, then its mean
will be close to the mean of the distribution itself.
More precisely, as the sample size increases approach-
ing the distribution size (or infinity, if the distribution
is continuous), then the sample mean approaches dis-
tribution mean.

Law of Sines Let α, β, γ denote the (measures of)
angles of some triangle ABC and denote by a (the
size of) the side, opposite to α, by b– the side oppo-
site to angle β and by c the third side (opposite to
γ). Then the following relations are true:

sinα

a
=

sinβ

b
=

sin γ

c
,

or, equivalently,

a

sinα
=

b

sinβ
=

c

sin γ
.

Law of Sines is used to solve oblique triangles. For
an illustration see Law of Cosines.

leading 1’s After the process of Gaussian elimina-
tion applied to a m × n matrix, the first non-zero

element of each row (except the rows consisting of all
zeroes) is 1 and is called leading 1.

leading coefficient For a polynomial of degree n,

p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

the coefficient of the highest degree term, an.

learning curve The same as logistic curve. See lo-
gistic differential equation.

least common denominator Abbreviated LCD,
is the least common multiple of two or more denom-
inators of fractions. To find LCD of fractions 8

15 and
5
8 we just find the LCM of 15 and 8.

least common multiple (LCM) For given two
natural numbers n and m, the least common mul-
tiple is the smallest whole number that is divisible
by both of these numbers. Example, for 12 and
22, LCM(12,22)=132. There are methods of finding
LCM of two or more numbers, and the most common
is described as follows. To find LCM, find prime fac-
torizations of that numbers and form a number, that
is the product of all prime factors, each of whose is
repeated only as many times as the largest multiplic-
ity in any of the numbers. Example: To find LCM of
25, 90 and 120, we write 25 = 52, 90 = 2·32 ·5, 120 =
23 ·3·5 and LCM(25,90,120)=23 ·32 ·52 = 1800. There
is a formula relating LCM with the greatest common
factor (GCF):

LCM(n,m) =
n ·m

GCF (n,m)
.

least squares regression line Suppose we have
gathered data that came in the form of ordered pairs.
Then each value geometrically represents a point on
the plane. The problem of linear regression is to find
a line that represents these values the best. The mea-
sure of ”closeness” of the line to the points from the
data is the sum of the squares of differences between
actual values and corresponding values on that line.
Among all the possible lines the one that has the
smallest sum of that values is called the least squares
regression line. As any other line this line has the
equation of the form y = mx+b, where m is the slope
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and b is the y-intercept. Traditionally, in Statistics,
this equation is written as

ŷ = b0 + b1x.

The notation ŷ is used to indicate that these are ”pre-
dicted”, not the actual values from the data. The
parameters b0, b1 could be found from the data. The
slope b1 = rsy/sx, where r is the correlation coef-
ficient of the data, sy is the standard deviation of
the second coordinates from the data (y-values) and
sx is the standard deviation of first coordinates from
the data (x-values). After the slope is found, the y-
intercept b0 is determined by the formula b0 = ȳ−b1x̄,
where the bar on top means the mean of the corre-
sponding y or x-values.

least upper bound Also called supremum. If a
function f or a sequence an are bounded above, then
”smallest” of all possible upper bounds is the least
upper bound. Example: The sequence an = 1− 1/n
is bounded by any number M ≥ 1 but not by any
number less than 1. The number 1 is the least upper
bound. See also greatest lower bound.

left-hand derivative If a function is not differ-
entiable at some point x = c, then the limit in the
definition of derivative does not exists, i.e.

lim
h→0

f(c+ h)− f(c)

h

does not exist. In some cases, however, one sided
limit might exist. If the left-hand limit

lim
h→0−

f(c+ h)− f(c)

h

exists, then it is called left-hand derivative of f at
the point x = c. See also right-hand derivative.

left-hand limit Let f(x) be a function defined
on some interval [a, b] (also could be an open inter-
val). Left-hand limit of f at some point c is the
limit of f(x) as the point x approaches c from the
left, or, which is the same, as x < c. The notation
is limx→c− f(x). The precise definition of left-hand
limit (the ε− δ definition) is the following: The func-
tion f has left-hand limit at the point c and that limit

is L, if for any real number ε > 0 there exists δ > 0
such that |f(x)−L| < ε as soon as |x−c| < δ, x < c.
See also limit and right-hand limit.

Legendre equation The differential equation of
second order

(1− x2)y′′ − 2xy′ + α(α+ 1)y = 0.

In case α = n, a non-negative integer, the solutions
of this equation are polynomials. They are called
Legendre polynomials, Pn(x) if, additionally, Pn(1) =
1.

Legendre polynomials Solutions of the Legendre
equation for α = 0, 1, 2, ... with the initial condition
Pn(1) = 1. These polynomials could be expressed in
the form

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

legs of a right triangle Two sides of a right
triangle that form the right angle. The other side is
called hypotenuse.

length of a line segment If the line segment is
on the x-axis and has endpoints a and b, then the
length is given by b− a. If the line segment connects
two points on the plane, then the length is just the
distance between these points. See distance formula.

length of parametric curve Let the curve C
be given by parametric equations x = f(t), y =
g(t), a ≤ t ≤ b and f ′ and g′ are assumed to be
continuous on [a, b]. Additionally, we assume that
when t increases from a to b, the curve C is traversed
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exactly once. Then the length of the curve C is given
by the formula

L =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Example: For a circle of radius 1, we have parametric
equations

x = cos t, y = sin t, 0 ≤ t ≤ 2π

and

L =

∫ 2π

0

√
sin2 t+ cos2 tdt =

∫ 2π

0

1 dt = 2π.

length of polar curve Let the curve C be given
with polar equation r = f(θ), a ≤ θ ≤ b. The the
length of the curve is given by the formula

L =

∫ b

a

√
r2 +

(
dr

dθ

)2

dθ.

Example: For the cardioid r = 1 + sin θ

L =

∫ 2π

0

√
(1 + sin θ)2 + cos2 θdθ = 8.

length of a space curve Suppose the
curve C is given by a vector function
r(t) = 〈f(t), g(t), h(t)〉, a ≤ t ≤ b. Then the
length of C is given by a formula generalizing the
one for the plane:

L =

∫ b

a

|r′(t)|dt.

length of a vector See norm of a vector.

less than An inequality, stating that one quantity
is smaller than the other, with notation A < B. If
the quantities are real numbers, then this statement
means that A is to the left of B on the number line.
See also greater than.

less than or equal to An inequality, stating that
one quantity is smaller than the other, or equal to it,

with notation A ≤ B. If the quantities are real num-
bers, then this statement means that A is to the left
of B on the number line, or the two points coincide.
See also greater than or equal to.

level curve For a function f(x, y) of two variables,
the equations f(x, y) = k with any real k in the range
of f , define the level curves of the function.

level surface For a function f(x, y, z) of three vari-
ables, the equations f(x, y, z) = k with any real k in
the range of f , define the level curves of the function.
Level surfaces of functions of n variables are defined
similarly.

L’Hospital’s rule Suppose the functions f and g
are defined on some interval, containing some point
c, with possible exception of that point. Assume also,
that the limit of f(x)/g(x) as x approaches c is an
indeterminate form 0/0 or ∞/∞. Then

lim
x→c

f ′(x)

g′(x)
= L

implies that also

lim
x→c

f(x)

g(x)
= L.

This rule is the major tool of computation of limits
when we have any kind of indeterminate expression.
Also, if the application of derivative results in another
indeterminate, then the repeated use of this rule still
might produce a finite limit. Examples:
(1)

lim
x→0

sinx

x
= lim
x→0

cosx

1
= 1.

(2)

lim
x→∞

2x2 − 5

5x2 + 3
= lim
x→∞

4x

10x
=

2

5
.

(3)

lim
x→0

x cot 2x = lim
x→0

x cos 2x

sin 2x

= lim
x→0

cos 2x− 2x sin 2x

2 cos 2x
=

1

2
.

L’Hospital’s rule is specifically formulated for two
types of indeterminate forms but can be used also
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for indeterminate forms 0 · ∞, 00, 1∞ and others.
For the first of these cases, if we need to calculate
the limit limx→c f(x)g(x) and one of the functions
approaches zero and the other one to infinity, then
we write the product fg as one of the quotients f

1/g

or 1/f
g and get indeterminate form 0/0 or ∞/∞ and

proceed as before. For other types the preliminary
logarithming the expression results in an indetermi-
nate form of one of the above types and after calcu-
lation of that limit we can find the original limit by
exponentiating the answer. Example: To calculate
the limit

lim
x→∞

(
1 +

a

x

)x
we logarithm the expression under the limit (denote
it by y) we get

ln y = x ln(1 + a/x) =
ln(1 + a/x)

1/x
.

Then, by the l’Hospital’s rule,

lim
x→∞

ln(1 + a/x)

1/x
= lim
x→∞

−a/x2

(1 + a/x)(−1/x2)

= lim
x→∞

a

1 + a/x
= a.

Hence, the limit in question is equal to ea.

like terms In an algebraic expression with one or
more variables, the terms where the variable parts
are identical (constant factors may be different). For
example, in the expression 2x2y3−3xy2 +x3y+4xy2

only the terms −3xy2 and 4xy2 are similar and could
be combined. The resulting expression is 2x2y3 +
xy2 + x3y. Also called similar terms.

limacon, or more precisely, limaçon The family of
parametric curves, given in polar coordinates by one
of the equations

r = a+ b sin θ, r = a+ b cos θ.

In the spacial case |a| = |b|, we have cardioid.

limit One of the most important notions of Calcu-
lus. On the intuitive level, the limit of a function
at a point or the limit of a sequence when the index
grows indefinitely, could be viewed as the eventual
value of the function or sequence. In the definitions
that follow we will describe precisely these notions
for functions and sequences.
(1) Let the function f be defined on some interval
I with possible exception of some point c inside of
that interval. We say that f(x) has limit L as x ap-
proaches c and write

lim
x→c

f(x) = L,

if for any real number ε > 0 there exists another
number δ > 0 such that |f(x) − L| < ε as soon as
|x− c| < δ, x 6= c.
(2) There are a few special cases that should be
treated separately. First, if the point c is one of the
endpoints of the interval I, then the limit should be
substituted by one-sided limits. For definitions see
left-hand limit, right-hand limit. Second, the case
when the point c is the point ∞ or −∞, the defini-
tion requires modification. Here is the case c =∞.
We say that the function f(x) has a finite limit L as
x approaches infinity and write

lim
x→∞

f(x) = L,

if for any real number ε > 0 there exists a number
N > 0 such that |f(x)− L| < ε as soon as x > N .
Finally, there is a case when the limit of a function
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does not exist in a very specific way of becoming in-
definitely large or indefinitely small. In these cases we
say that the function has infinite limit, understand-
ing that the limit does not exist as a finite number.
One of the possible cases is the following:
We say that limx→c f(x) =∞ if for any real number
M > 0 there exists a real δ > 0 such that f(x) > M
as soon as |x− c| < δ, x 6= c.
(3) Limits of sequences could be defined exactly as
the limits of functions at infinity, if we view a se-
quence an as a function defined on positive integers
only: an = f(n). With this view, the exact definition
of the limit of a sequence is this:
We say that a numeric sequence {an}, n = 1, 2, 3, ...
has a limit A and write

lim
n→∞

an = A,

if for any ε > 0 there exists a positive integer N such
that |an −A| < ε as soon as n ≥ N .

limit comparison test Assume that
∑
an and∑

bn are both series with positive terms. If

lim
n→∞

an
bn

= c

and c > 0 is a finite number, then either both series
converge or both diverge.

limit laws Let f(x) and g(x) be functions such that
the limits

lim
x→c

f(x) and lim
x→c

g(x)

exist. Then the limits of their sum, difference, prod-
uct and quotient also exist and could be calculated
by the rules

lim
x→c

[f(x)± g(x)] = lim
x→c

f(x)± lim
x→c

g(x),

lim
x→c

f(x) · g(x) = lim
x→c

f(x) · lim
x→c

g(x),

lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
.

In the last law we assume that limx→c g(x) 6= 0.

limit of integration In the notation of the definite

integral
∫ b
a
f(x)dx the interval endpoints a and b are

called limits of integration or integration limits.

line One of the basic object of Euclidean geometry
along with points and planes. Lines are not defined
but instead assumed to be understood as having no
width and infinite length in both directions. In Carte-
sian coordinate system lines could be given by equa-
tions. The most general equation of the line on the
plane is written in the form ax+by = c where a, b, c
are any real numbers. Any line could be uniquely
determined by two points (according to one of the
Euclidean postulates). If the two points have coordi-
nates (x1, y1) and (x2, y2) then we define the slope of
the line by the relation

m =
y2 − y1
x2 − x1

.

This quantity does not depend on the choice of the
points or the order of that points. Now, the equation
of the line passing through that two points could be
written using the point-slope form of the line

y − y1 = m(x− x1),

or, equivalently, we could use the coordinates (x2, y2).
In the case when the slope of the line and its inter-
section b with the y-axis (y-intercept) are known, we
can use the slope-intercept equation of the line

y = mx+ b.

Each of these forms could be translated into the
other, hence, they are equivalent.
The line parallel to x-axis (horizontal line) has zero
slope and is given by the equation y = b. The slope
of the vertical line (parallel to y-axis) is not defined
and could be written in the form x = a.
Using the notion of the slope we can see that two
lines on the plane are parallel if and only if their
slopes are equal. If two lines are given by the equa-
tions y = m1x+ b1 and y = m2x+ b2, then they are
perpendicular if and only if m1 ·m2 = −1.
In three dimensional space any plane is given by the
equation ax+by+cz = d and lines could be presented
as intersections of two planes in the space. This ap-
proach could be extended also to lines in higher di-
mensional spaces.
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For additional information about lines see also nor-
mal line, secant line, tangent line.

line integral (1) Let C be a curve on the plane
given by parametric equations

x = x(t) y = y(t) a ≤ t ≤ b

and let ds denote the element of the length of that
curve. Then the line integral along this plane curve
could be defined as ∫

C

f(x, y)ds

=

∫ b

a

f(x(t), y(t))
√
x2t (t) + y2t (t)dt.

(2) Similarly, if C is a space curve, then we have∫
C

f(x, y, z)ds =

∫ b

a

f(x(t), y(t, z(t)))
√
x2t (t) + y2t (t) + z2t (t)dt.

(3) If r(t) is a vector function on the plane or in space,
that defines a curve C there, then the line integral
along the curve C for a vector field F is defined as∫

C

F · dr =

∫ b

a

F(r(t)) · r′(t)dt.

(4) The fundamental theorem of calculus extends to
line integrals of vector functions and has the following
formulation:
Let C be a smooth curve given by the vector function
r(t), a ≤ t ≤ b. If f is a differentiable function with
continuous gradient on C, then∫

C

5f · dr = f(r(b))− f(r(a)).

linear algebra One of the branches of the mod-
ern algebra. Deals with systems of linear equations,
matrices, vectors, linear transformations, finite di-
mensional vector spaces and many other objects. See
corresponding entries for more details.

linear algebraic equation An equation of one or

more variables where all the variables are linear. Ex-
ample: 2x − 3y = 5. See also systems of linear alge-
braic equations.

linear approximation Also called tangent line ap-
proximation. For a given differentiable function f at
some point x = a, the line that passes through the
point (a, f(a)) and has the slope f ′(a):

L(x) = f(a) + f ′(a)(x− a).

This line provides first degree approximation to the
values of the function in small interval around the
point a.

linear combination of vectors If v1, v2, · · · , vn
is a set of vectors in some vector space V and
c1, c2, · · · , cn is a set of scalars, then the expression
c1v1 + c2v2 + · · ·+ cnvn is called linear combination
of the set of vectors. For any system of vectors in a
linear space this is another vector in V .
Linear combinations of functions and matrices are de-
fined in exactly the same way.

linear dependence and independence of func-
tions Two functions f and g are linearly dependent
on some interval I if there exist two constants a and
b, not both zero, such that

af(x) + bg(x) = 0

for all x on I. Otherwise, the functions are linearly
independent. This notion could be defined for any
number of functions.

linear dependence and independence of vec-
tors A system of vectors v1, v2, · · · , vn is linearly
dependent, if there exist scalars c1, c2, · · · , cn, not all
of which are zero, such that the linear combination
c1v1 + c2v2 + · · · + cnvn = 0. If there are no
such constants, then the system of vectors is called
linearly independent.

linear equation (1) An equation of the form
ax + b = c, where a, b, c are real (usually ra-
tional) numbers. Solution of this equation is
x = (c− b)/a. Example: 2x− 3 = 6 has the solution
x = (6− (−3))/2 = 9/2.
(2) An equation of two variables of the form
ax + by = c. This equation has infinitely many
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solutions that graphically represent a line on the
plane. More generally, an equation with n variables
a1x1 + a2x2 + · · · + anxn = b is also linear and
its solution set represents an (n − 1)-dimensional
hyperspace.

linear inequality An expression of the form
ax + b ≤ c, where a, b, c are real numbers, or
any other similar expression with relations <, >
or ≥ instead. Linear inequalities with two or more
variables are defined exactly like the linear equations,
except that the equality sign is substituted by one of
four inequality signs.

linear function The function, given by the
equation f(x) = ax + b, where a and b are any real
numbers. The graph of this function is a line (hence,
the term), with the slope equal to a and y-intercept b.

linear model If the mathematical model of some
physical phenomena, process, etc. results in a lin-
ear equation(s) (algebraic or differential), them the
model is called linear.

linear operator See linear transformation.

linear ordinary differential equations A class
of ordinary differential equations where the unknown
function and all of its derivatives appear in the first
order. These equations could be classified further
depending on the nature of coefficients (constant or
variable) or the number of unknown functions and
equations (single equation or system of equations),
order of the equation, the presence of the ”right side”
or its absence (homogeneous or non-homogeneous),

etc. The equation y′′′+ 2y′′− 4y′+ 3y = 0 is a linear
homogeneous equation of the third order with con-
stant coefficients and the equation y′′+t2y′−sin ty =
cos t is a linear non-homogeneous equation of the sec-
ond order with variable coefficients.
The methods of solving homogeneous equations with
constant coefficients:
(1) To solve the most general second order equation

ay′′ + by′ + cy = 0 (1)

we assume that the solutions should be exponential
functions of the form ert, where r is some unknown
constant to be determined. Substituting in the equa-
tion gives

(ar2 + br + c)ert = 0,

or, because ert 6= 0, we have the equation ar2 + br +
c = 0 which is just an algebraic quadratic equation,
called characteristic equation. Depending on the so-
lutions of this equation, we have three possible types
of solutions for the differential equation.
(a) The characteristic equation has two real dis-
tinct solutions r1 and r2. Then the functions er1t

and er2t are the solutions of the equation (1) and
the general solution of that equation is given by
y(t) = c1e

r1t + c2e
r2t with arbitrary constants c1, c2.

Example: The equation y′′ + y′ − 6y = 0 has char-
acteristic roots r = 2,−3 and the general solution of
the equation is y = c1e

2t + c2e
−3t.

(b) The characteristic equation has on real repeated
root r. Then the general solution of the equation (1)
is given by the formula y(t) = c1e

rt + c2te
rt.

Example: The equation y′′ − 8y′ + 16y = 0 has one
repeated characteristic root r = 4 and the general
solution is y = c1e

4t + c2te
4t.

(c) The characteristic equation has two complex con-
jugate roots: r1 = λ+iµ, r2 = λ−iµ. In this case it is
still possible to chose real solutions for the equation
(1) and the general solution will have the form

y(t) = c1e
λt cosµt+ c2e

λt sinµt.

Example: The equation y′′+4y = 0 has complex con-
jugate characteristic roots r = ±2i and the general
solution is y = c1 cos 2t+ c2 sin 2t.

(2) Solutions of equations of higher order follow the
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same idea as the solution of the second order. To
solve the general nth order homogeneous equation
with constant coefficients

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0

we form the corresponding algebraic characteristic
equation anr

n+an−1r
n−1+· · ·+a1r+a0 = 0 and find

its roots. As in the case of the quadratic equations,
we have only three possible outcomes described above
as cases (a), (b) and (c). Accordingly, the solutions
of the nth order equations are just combinations of
the solutions of these three types.
(3) For another approach for solving linear homoge-
neous equations with constant coefficients see Laplace
transform method.

Methods of solutions of non-homogeneous linear
equations with constant coefficients are described in
entries (articles) undetermined coefficients,variation
of parameters, Laplace transform method.
Arbitrary linear equations of the first order (con-
stant or variable coefficients, homogeneous or non-
homogeneous) could be solved by the method of in-
tegrating factors.
Equations of order two or higher with variable coeffi-
cients are much more difficult to solve. See the entries
Euler equation, series solutions, ordinary points, sin-
gular points.
For solutions of systems of linear equations see the
separate entry systems of differential equations.

linear programming A branch of applied mathe-
matics dealing with optimization problems: problems
of finding the largest or smallest values of a given
quantity. Mathematically it is reduced to finding so-
lutions of systems of linear inequalities. Among dif-
ferent methods of solutions the most common are the
graphical (geometric) and simplex methods.

linear relationship A relation between two quan-
tities (variables) where one of them depends on the
other linearly: If x and y are the variables then
y = ax+ b where a and b are fixed constants.

linear regression See least squares regression line.

linear speed For an object that moves along some
curve. If the speed is constant then it could be deter-

mined by the formula v = s/t, where s is the distance
covered ant t is the time elapsed. For the special case
when the curve is a circle of radius r, there is a simple
relationship between the linear speed v and angular
speed ω : v = rω.

linear systems General term that may refer to ei-
ther systems of linear algebraic equations or systems
of linear differential equations.

linear term In a polynomial the term that contains
x. Example: In the polynomial p(x) = 2x2 − 3x + 5
the linear term is −3x.

linear transformation Let T : V →W be a func-
tion from one linear vector space to another. It is
called linear transformation if for any two vectors u,v
from V and any scalar c, the following conditions are
satisfied:

(a) T (u + v) = T (u) + T (v)

(b) T (cu) = cT (u).

In the special case when V = W , linear transforma-
tions are also called linear operators.
The set of all vectors in V that are transformed to
the zero vector by the transformation T is called the
kernel of T and denoted ker(T ). It is a subspace of
V in the sense that any linear combination of kernel
vectors also belongs to the kernel. Also, the set of all
vectors in W that are images of at least one vector
from V is called the range of T and denoted R(T ).
The range is a subspace of the image space W . The
dimensions of kernel and range are called nullity and
rank of T respectively. By one of the important the-
orems of linear algebra, if the dimension of the space
V is n, then rank(T ) + nullity(T ) = n.
A linear transformation T : V →W is called one-to-
one if it maps distinct vectors from V to distinct vec-
tors in W . One-to-one transformations possess the
inverse, denoted by T−1 and defined by the proper-
ties:
If v ∈ V , then T−1(T (v)) = v, and
If w ∈W , then T (T−1(w)) = w.
For additional information see also composition of
linear transformations.

linearity The property of being linear. Can refer
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to any of the situations where linear phenomenon is
demonstrated. This includes algebraic equations, dif-
ferential equations, transformations, and many oth-
ers.

linearization of a nonlinear equation In dif-
ferential equations, the procedure of substituting a
nonlinear equation by a simpler linear equation. For
example, the equation of the pendulum

d2θ

dt2
+
g

L
sin θ = 0

is nonlinear. To solve this equation we substitute it
by the linear equation

d2θ

dt2
+
g

L
θ = 0

which is much easier to solve and gives good approx-
imation of the original problem.

linearly independent solutions For differential
equations. Two solutions of an equation f and g are
linearly independent if from the equality

αf(x) + βg(x) = 0

it follows that α = β = 0. See also linear dependence
and independence of functions.

linearly independent sets Usually relates to sets
of vectors. See linear dependence and independence
of vectors.

local maximum and minimum Let the function
f(x) be defined on some interval that contains the
point c. The value f(c) is called local maximum of
f , if there is some open interval I with center at c
such that f(x) ≤ f(c) for all points x in I. Similarly,
the point is local minimum, if the opposite inequality
f(x) ≥ f(c) is true. For the method of determining
local maximums and minimums see first derivative
test or second derivative test.

logarithm The mathematical operation that is the
inverse of the operation of exponentiation. As the ex-
ponentiation requires a base to rase to a power, loga-
rithms also are meaningful for a base only. According
to this approach, y = bx, if and only if x = logb y.

The base b is a positive number, b 6= 1. The most
common bases are 2, 10, and e. In the case of base
10 the logarithm is called common logarithm and in
case e it is called natural logarithm. The following
important properties of logarithms are true:
(1) logb(x · y) = logb x+ logb y
(2) logb(x/y) = logb x− logb y
(3) logb x

r = r logb x.
Here x, y > 0 and r is any real number. See also
change of base formula for logarithms and logarith-
mic function.

logarithmic differentiation Let f(x) be a posi-
tive function so that the function ln f(x) is defined.
By the chain rule,

d

dx
ln f(x) =

f ′(x)

f(x)
,

which is the logarithmic derivative of f . This kind of
differentiation is used often then the derivative of the
function is more difficult to calculate. Example: If

y =
x2(x− 1)3

x+ 1

then ln |y| = 2 ln |x|+ 3 ln |x− 1| − ln |x+ 1| and

1

y

dy

dx
=

2

x
+

3

x− 1
− 1

x+ 1

which results in

y′ = y

(
2

x
+

3

x− 1
− 1

x+ 1

)

=
2x(x− 1)2(2x2 + 2x− 1)

(x+ 1)2
.

logarithmic function The function y = logb x
where b > 0, b 6= 1. The domain of this function
is (0,∞) and the range is the set of all real numbers.
The inverse of the exponential function. The func-
tion y = loge x has special notation y = lnx and in
case b = 10 the notation y = log x is used without
indication of the base.
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logical contrapositive If a logical statement is of
the form ”If A, then B”, (symbolically, A ⇒ B),
then the statement ”not B ⇒ not A”, meaning ”If B
is not true, then A is not true” is called logical con-
trapositive. Direct and contrapositive statements are
equivalent in the sense that either they both are true
or both are false. See also conditional statement.

logistic differential equation The first degree
non-linear differential equation of the form

y′ = r
(

1− y

K

)
y,

where r and K are constants. The solution of this
equation with initial condition y(0) = y0 is given by

y =
y0K

y0 + (K − y0)e−rt

and is called logistic curve. The mathematical
models described by logistic equation are called
logistic models and the function growth is called
logistic growth.

long division of numbers A procedure, algo-
rithm, for dividing two numbers, usually integers
or decimals. This method is used in cases when
simple division is difficult. For example, to divide 72
by 9 we need only to remember the multiplication
table and find the answer to be 8 because we know
that 8 · 9 = 72. On the other hand, if we want to

divide 462 by 3, multiplication table is difficult to
apply and we use the long division. The procedure
is illustrated below.

long division of polynomials When dividing a
polynomial P (x) by another polynomial Q(x), where
the degree of Q is less than or equal to the degree of
P , the result is another polynomial plus, as a rule, a
remainder. This is expressed as

P (x)

Q(x)
= D(x) +

R(x)

Q(x)
,

where D is the resulting polynomial which degree is
always less than the degree of P and R is the remain-
der polynomial which always has degree less than the
degree of Q. The practical procedure of finding the
polynomials D(x) and R(x) is called long division (of
polynomials) and is similar to the long division of
numbers. An example below illustrates this process.

In this example D(x) = x3+2x−3 and the remainder
is 0.
When dividing by a binomial of the form x − c the
synthetic division is usually simpler and easier to per-
form. See the corresponding article for details.

lower bound For a function f(x) a number M is
a lower bound, if f(x) ≥M for all values of x in the
domain of f .

lower triangular matrix A square matrix where
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all the entries above the main diagonal are zeros. Ex-
ample:  2 0 0

3 −1 0
−2 5 3

 .

The determinant of such a matrix is just the product
of all diagonal elements. See also upper diagonal ma-
trix.

lower-upper decomposition of a matrix Or
LU -decomposition. If a square matrix A can be re-
duced to row-echelon form U by Gaussian elimina-
tion without interchange of rows, then A can be fac-
tored in the form A = LU , where L is lower triangu-
lar matrix and U is an upper triangular matrix.

lurking variable In Statistics. Suppose there are
two random variables related to each other in a way
that the change of one of them affects the other. In
other words, one of the variables is the explanatory
(or independent) and the other one is the response
(or dependent) variables. In the majority of real
life situations, however, there are many other aspects
(variables) that affect the change of the response vari-
able. Sometimes they are disregarded by some reason
intentionally (such as to simplify the situation) and
sometimes by omission or a mistake. These type of
variables are the lurking variable.

M

MacLaurin series The special case of Taylor se-
ries for representation of functions as a power series
expanded at the point x = 0. If the function f(x)
is infinitely differentiable (and also analytic) in some
neighborhood of the point zero, then the power series
expansion is true:

f(x) =

∞∑
n=0

f (n)(0)

n!
xn.

Most of the elementary functions have their Maclau-
rin series expansions in specific intervals:

1

1− x
=

∞∑
n=0

xn, (−1, 1)

ex =

∞∑
n=0

xn

n!
, (−∞,∞)

ln(1 + x) =

∞∑
n=1

(−1)n+1x
n

n
, (−1, 1)

sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
, (−∞,∞)

cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
, (−∞,∞)

tan−1 x =

∞∑
n=0

(−1)n
x2n+1

2n+ 1
, (−1, 1).

See also binomial series.

magnitude of a vector See norm of a vector.

main diagonal of a matrix For a square matrix
A, the imaginary line, connecting the element on the
first row of the first column with the element on the
nth row and nth column. Example: In the matrix

A =

 2 4 −2
0 −1 1
−2 5 3


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the main diagonal goes through the elements 2, -1
and 3.

major axis Assume we have an ellipse with the
center at the origin

x2

a2
+
y2

b2
= 1

with a > b. Then the foci of the ellipse are located on
the x-axis. The line segment connecting the points a
and −a on the x-axis is the major axis of the ellipse.
In case a < b, the major axis is located along the
y-axis. The same notion is valid also for translated
and rotated ellipses. See also minor axis.

mantissa An outdated term, used to indicate the
decimal number’s fractional part. Was mainly used in
logarithmic and trigonometric tables to save space.

map, mapping A term used as an equivalent to
the term transformation or, sometimes also function.

Markov chain or Markov process. A sequence of
events/processes for which the outcome in the next
step (or stage) depends on the preceding step. It is
also said that in Markov chains the future states de-
pend only on the present state and do not depend on
past.

margin of error As a rule, margin of error is de-
fined to be twice the standard error of the sampling
distribution. The interval around the mean of the
distribution that has twice the length of the mar-
gin of error (one margin of error to the left and one
to the right) is the confidence interval. Depending
on the type of the sampling distribution (of means,
of proportions, or something else) the formulas for
calculating margins of errors vary significantly. For
example, the standard error for proportions is de-
fined as SE(p̂) =

√
p̂q̂/n and the margin of error is

ME = 2SE(p̂). Here n is the sample size, p̂ is the
proportion of ”success”, and q̂ = 1− p̂.

marginal cost function In economics, the term
marginal is used as a substitute for derivative with
respect to functions under consideration. If C(x) de-
notes the cost function, then C ′(x) is the marginal
cost function that shows rate of change of the cost
associated with producing x units of some product.

The marginal revenue and profit functions are defined
in the same way.

mathematical induction Or the method of
mathematical induction. One of the main logical
tools in proving statements/theorems, especially in-
volving unlimited number of elements. It is actually
one of the axioms of arithmetic.
The method works as follows: Suppose we have a
statement P (n) for each natural number n and the
following two conditions are true:
1. P (1) is true.
2. For every natural number k, if P (k) is true then
P (k + 1) is true.
Then P (n) is true for all natural numbers n.
Example: Prove that for all natural numbers n,

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

Proof. Let P (n) be the statement we need to prove.

In that case P (1) will mean 1 = 1(1+1)
2 which is true.

Now let us assume that P (k) is true:

1 + 2 + 3 + · · ·+ k =
k(k + 1)

2

and prove that P (k + 1) is true. We have

1 + 2 + 3 + · · ·+ k + (k + 1)

= (1 + 2 + 3 + · · ·+ k) + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

2

which is exactly the statement P (k+ 1). This means
that P (n) is true.

mathematical model The mathematical (alge-
braic, analytic, etc.) expression of real life problems
or processes. Mathematical models are, as a rule,
just approximations of actual processes, because in
life and nature there are too many aspects to be
included. The criteria of correctness and effective-
ness of a mathematical model is its accuracy. If
the model results in solutions that (more or less)
accurately describe the natural phenomenon then it
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is considered a good model. Depending on nature
of the problem, the model will result in algebraic,
trigonometric, differential, or some other type of
equations.

matrix Plural: matrices. Formally, a matrix is a
collection of numbers, vectors, functions, etc., orga-
nized in m rows and n columns and separated by a
pair of parentheses, braces, or other convenient sep-
aration symbols. A numeric m × n matrix has the
form 

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


where the coefficients {ajk} are real or complex num-
bers. The following operations are defined for matri-
ces (more details and examples are provided in cor-
responding special entries, such as addition and sub-
traction of matrices, multiplication of matrices, ad-
joint of a matrix, inverse of a matrix, and many oth-
ers):
(1) The equality of two matrices A and B means that
they have the same size (the number of rows and
columns are the same for them) and that all elements
in the first matrix are equal to the corresponding el-
ements in the other matrix.
(2) Addition (subtraction) of two matrices is possible
only if they have the same size. In that case we just
add (subtract) elements at identical positions.
(3) Multiplication of a matrix by a scalar is defined
as multiplication of each element of the matrix by
that scalar (constant, number). Division by a scalar
is defined similarly.
(4) Multiplication of the matrix A (from the left)
by the matrix B (from the right) is possible only if
the number of columns in A is equal to the number
of rows in B. Hence, if A is of size m × k and B
is of size k × n, then the resulting matrix will have
the size m × n. The element of the product in the
ith row and jth column (denoted by cij) is equal to
ai1b1j + ai2bj2 + · · · + aikbkj . Generally speaking,
multiplication of matrices is not commutative. See
examples in the entry multiplication of matrices.
(5) For square matrices (the same number of rows

and columns) the main diagonal consists of elements
located on positions with the same numeric value for
rows and columns: ajj , j = 1, 2, · · · , n. The matrix
that has all 1’s on the main diagonal and zeros else-
where is the identity matrix of size n. The inverse
to a matrix A is a matrix B which multiplied by A
(from both left and right) results in identity matrix.
If the inverse exists, then it is unique and is denoted
by A−1. If the inverse exists, then the matrix is called
invertible, otherwise it is called singular or noninvert-
ible.
(6) The transpose of a matrix is a matrix for which
the roles of the rows and columns are interchanged.
If A is of size m×n, then its transpose is of size n×m.
For additional properties and operations with matri-
ces see also augmented matrix, Gaussian elimination,
Gauss-Jordan elimination, adjoint of a matrix, eigen-
values, eigenvectors, similar matrices, zero matrix.

matrix function A matrix where each entry is a
function. The matrix

A =

(
cos θ − sin θ
sinθ cos θ

)
describes rotations of the plane and is an example of
matrix function.

matrix method For solving systems of linear al-
gebraic equations. If the system has equal number
of equations and unknowns (square system), then it
could be written in the matrix form Ax = b, where
A is a square matrix of size n×n and x,b are column
vectors of size n. Now, if A is invertible, then apply-
ing its inverse A−1 from the left to this equation we
will get x = A−1b and this is the matrix solution of
the system of equations.

matrix transformation A linear transformation
T : V →W of one vector space to another that could
be written as

Tv = Mv,

where M is some matrix. If V and W are the Eu-
clidean spaces Rn and Rm respectively, then any lin-
ear transformation is a matrix transformation.

maximization problems The problem of finding
the largest value of some variable quantity. See also
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optimization problems.

maximum and minimum values The largest or
smallest values of a function on a given interval. De-
pending on type of the interval (closed or open) and
the function (continuous or not), the function may
or may not take that values. Additionally, we distin-
guish the absolute maximum and minimum and local
maximum and minimum values. For the methods of
finding these values see corresponding entries.

mean Average of a set of objects (numbers, func-
tions, etc.). See arithmetic mean and geometric mean
for definitions.

mean value theorem Let f(x) be a continuous
function on some closed interval [a, b] and assume it
is differentiable on open interval (a, b). Then there
exists (at least one) point c, a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
.

The geometric meaning of this theorem is that there
should be at lest one point on the graph of the func-
tion where the tangent has the same slope as the line
segment connecting two endpoints.

mean value theorem for integrals If the func-
tion f(x) is continuous on some interval [a, b], then
there exists a point c, a < c < b, such that∫ b

a

f(x) dx = f(c)(b− a).

measure Measure on a set is a way (a rule) to as-
sign a positive number to each subset of that set (in-
cluding the set itself). Intuitively, a measure of a set
on the real line is its ”length”, the measure of a plane
set is its area, and the measure of a three-dimensional
solid is its volume. Exact definition of measure of a
set is given in advanced analysis courses.

median For a set of numeric values, the value that
is in the middle of that set in the sense that there
are exactly equal numbers in the set that are greater
than median or less than the median. The median
may or may not be an element of the set. Examples:
(1) To find the median for the set of numbers S =

{2, 7, 3, 9, 6, 2, 4} we first put them in order, repeat-
ing the numbers that appear more than once: 2, 2, 3,
4, 6, 7, 9. Now, the number 4 (which belongs to the
set S) is the median, because we have three numbers
less than 4 and three numbers greater than 4.
(2) For the set S = {2, 7, 3, 5, 9, 6, 2, 4} we order it
and get 2, 2, 3, 4, 5, 6, 7, 9. Now, because the num-
ber of elements is even, there is no number in the set
with the property of being in the middle. In this case
we take two ”middle” ones 4 and 5 and their arith-
metic mean (4+5)/2=4.5 will be the median of S. In
this case median does not belong to S.

method of cylindrical shells One of the methods
of evaluating the volumes of three-dimensional solids
that are solids of revolution. Suppose we need to find
the volume of a solid that is formed by rotating the
curve y = f(x), a ≤ x ≤ b, about the axis x = c.
The method consists in considering small portions of
the interval [a, b] with the height f(x) with x being
some point in that portion, rotated about the same
axis x = c. The result is a cylindrical shell. If we
calculate the volumes of that shells and add all the
small shells’ volumes, the result will be the approx-
imate volume of the solid. In the limit, as the sizes
of the bases become smaller and the number of shells
increase, we will get the exact volume of the solid
which is now given by the integral

V = 2π

∫ b

a

r(x)f(x)dx,

where r(x) is the distance from the point x to the
axis of rotation.
Example: Consider the region bounded by the lines
y = x/2, y = 0, x = 2. Find the volume of the solid
that is obtained by rotating this region about the axis
x = 3.
Solution: The region is a triangle with vertices at
the origin and points (2, 0), (2, 1). If we now use the
method of cylindrical shells, we will have r(x) = 3−x
and

V = 2π

∫ 2

0

(3− x)
x

2
dx

=

(
3x2 − x3

6

)
|20 =

64π

3
.
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method of Lagrange multipliers Allows to find
the extreme values of a function of several variables
using the so-called Lagrange multipliers:
Theorem. To find the maximum and minimum val-
ues of the function f(x, y, z) subject to the constraint
g(x, y, z) = k (assuming that these extreme values ex-
ist on that surface and 5g 6= 0):
(1) Find all the values of x, y, z, λ such that

5f(x, y, z) = λ5 g(x, y, z)

and
g(x, y, z) = k

(2) Evaluate the function f at all points (x, y, z) that
are found in the previous step. The largest of these
values is the maximum value of f and the smallest is
the minimum value of f .

method of least squares See least squares regres-
sion line.

midpoint formula If (a, b) and (c, d) are two
points on the plane, then the point on the middle
of line segment connecting these points has the coor-
dinates

(
a+c
2 , b+d2

)
.

midpoint rule For approximate evaluation of an
integral. It the function f(x) is defined on some fi-
nite interval [a, b], then we divide that interval into n
equal parts of the length ∆x = (b − a)/n, as in the
definition of the Riemann integral. Then denote the
midpoint of the interval [xi, xi+1] by xi, 1 ≤ i ≤ n.
With this notations the midpoint rule states that∫ b

a

f(x)dx ≈ ∆x

n∑
i=1

f(xi).

This method is less accurate than the trapezoidal rule
or the Simpson’s rule. The midpoint rule is easily
extended to functions of more than one variables in
a very similar way.

minimization problems The problem of finding
the smallest value of some variable quantity. See also
optimization problems .

minor axis Assume we have an ellipse with the
center at the origin

x2

a2
+
y2

b2
= 1

with a > b. Then the foci of the ellipse are located on
the x-axis. The line segment connecting the points b
and −b on the y-axis is the minor axis of the ellipse.
In case a < b, the minor axis is located along the
x-axis. The same notion is valid also for translated
and rotated ellipses. See also major axis.

minors of matrix Let A be a square matrix with
entries {aij}. The minor of matrix A corresponding
to the element aij is the determinant of the matrix
that remains after we erase the ith row and jth col-
umn of the matrix A. Example: If

A =

−4 4 1
0 −1 3
2 5 2


then the minor corresponding to the element a23
(which is 3) is

det

(
−4 4
2 5

)
= −20− 8 = −28.

See also cofactor.

mixing problems Or mixture problems. A gen-
eral name for a category of application (word) prob-
lems where the objective is to find the amount of two
ingredients to be mixed to make a mixture with spec-
ified properties. Examples: (1) What quantity of a
60% acid solution must be mixed with a 30% solution
to get 6 liters of 50% solution? Solution: Denote by x
the amount of the 60% solution and by y the amount
of the 30% solution. Then the amount of the acid in
x liters will be 0.6x liters (because only 60% of it is
actually acid) and the amount of acid in the y liters
will be 0.3y liters. In the 6 liter mixture the amount
of the acid will be 0.5 × 6 = 3 liters. This results in
the equation 0.6x+ 0.3y = 3 and the second relation
connecting the two variables is x+ y = 6 because the
total amount is 6 liters. This simple system of linear
equations has the solution x = 4, y = 2.
(2) A jeweler has a ring weighing 90 g made of an
alloy of 10% silver and 90% of gold. He wants to
use this ring to make another piece of jewelry with
gold content of 75%. How much silver he needs to
add? Solution: Denote by x the amount of silver to
be added. Then the weight of the new alloy will be
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90 + x grams and the amount of gold there will be
0.75(90 + x) grams. On the other had this new mix-
ture still contains the same amount of gold as before,
which is 90% of 90 grams, equal to 81 grams. Hence,
the equation will be 0.75(90 + x) = 81. The solution
is x = 18 grams.

mode For a set of numeric values, the number that
appears most frequently. A set may have multi-
ple modes or have none at all. Examples: The set
S = {1, 2, 3, 4, 2, 5, 2, 6} has one mode which is 2.
The set S = {1, 2, 3, 4, 3, 5, 2, 6} has two modes: 2
and 3, and the set S = {1, 2, 3, 4, 5, 6} has no mode,
because no numbers appear more than once. In this
last case it also could be said that all the elements of
the set are modes.

model, mathematical See mathematical model.

modulus of a complex number For a complex
number z = x + iy, the non-negative number |z| =√
x2 + y2. Shows the distance from the point z on

the complex plane to the origin. Also sometimes
called absolute value of the complex number.

monomial An algebraic expression that contains
constants multiplied by natural power(s) of one or
more variables. Examples: 2x2, −3x3y2, xyz.

monotonic function A function that is either in-
creasing or decreasing. See corresponding entries.

monotonic sequence A sequence that is either in-
creasing or decreasing. See corresponding entries.

monotonic sequence theorem If a monotonic
sequence is bounded, then it has a finite limit.

multiple-angle formulas In trigonometry, formu-
las relating trigonometric functions of multiple angles
with functions of single angle. The most common are
the double angle formulas, but triple or quadruple
angle formulas also exist. Here is one of possible ver-
sions of the triple angle formula for cosine function:

cos 3θ = 4 cos3 θ − 3 cos θ.

Other versions of this formula and formulas for other
functions also exist but very rarely used.

multiple integral For functions of several real

variables. If a function f depends on more than one
variable, then the generalization of Riemann sums
and Riemann integrals allows to integrate this func-
tion in a domain in n-dimensional Euclidean space
Rn. The most common cases are the double integral
and triple integral. See corresponding entries for de-
tails of definitions.

multiplication of complex numbers (1) Let
z = x + iy and w = u + iv be two complex num-
bers written in the standard form. Then, to mul-
tiply these two numbers we multiply all terms with
each other and combine the real and imaginary parts:
z · w = (x + iy)(u + iv) = (xu − yv) + i(xv + yu),
because i2 = −1. Example:

(3− 2i)(−1 + 4i) = −3 + 2i+ 12i− 8i2

= −3 + 8 + (2 + 12)i = 5 + 14i.

(2) If the complex numbers z = r(cos θ + i sin θ) and
w = ρ(cosφ+ sinφ) are given in trigonometric form,
then

zẇ = rρ[cos(θ − φ) + i sin(θ − φ)].

multiplication of fractions The product of two
fractions is defined to be another fraction with the
numerator being the product of two numerators and
the denominator the product of denominators. For-
mally, if a

b and c
d are the given fractions, then

a

b
· c
d

=
a · c
b · d

.

In practice, instead of multiplying directly, we sim-
plify first and then multiply, to avoid possible big
numbers. Example:

12

25
· 15

32
=

12 · 15

25 · 32
=

3 · 3
5 · 8

=
9

40
.

multiplication of functions For two functions
f(x) and g(x) their product (result of multiplication)
function is defined to be the product of their values:
(fg)(x) = f(x)g(x). This function is defined where
f and g are both defined.

multiplication of matrices Let A be an m × r
matrix and B an r × n matrix. Then the product
AB = A · B is an m × n matrix whose entries are
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determined by the following rule: The entry in row
i and column j is the sum of products of all pairs
from ith row and jth column. In more detail. Let
A = {aij} and B = {bij}. Then the product matrix
C = AB has entries cij =

∑r
k=1 aikbkj . As seen from

the definition, matrix product is possible only when
the number of columns in the first matrix is equal to
the number of rows in the second one. In particular,
matrix multiplication is not commutative, because in
most cases BA is not even defined when AB is de-
fined. For square matrices A,B both products AB
and BA are defined but are not equal in general. Ex-
amples: (1)Let

A =

(
1 2 4
2 6 0

)
, B =

 4 1 4 3
0 −1 3 1
2 7 5 2

 .

Then

AB =

(
12 27 30 13
8 −4 26 12

)
.

(2) If

A =

(
2 −3
1 4

)
, B =

(
0 5
2 −1

)
then

AB =

(
−6 16
8 1

)
, BA =

(
5 20
3 −10

)
and hence, AB 6= BA.

multiplication of polynomials To multiply two
polynomials we just multiply all terms of the first one
by all terms of the second one and combine all like
terms. Formally, if

p(x) =

n∑
i=0

aix
i, q(x) =

m∑
j=0

bjx
j ,

then the product is a polynomial of degree n + m
given by

p(x) · q(x) =

n+m∑
k=0

ckx
k,

where ck =
∑k
i=0 aibk−i. Example:

(x2 + x− 2)(x3 − x+ 1) = x5 + x4 − 3x3 + 3x− 2.

multiplication of power series Assume the func-
tions f(x) and g(x) are represented by power series.
Then the product of these functions could be repre-
sented as a power series (with the interval of con-
vergence being equal to intersection of two intervals
of convergence) and that series is the product of the
power series of the functions f and g. Example: To
multiply the functions ex and 1/(1 + x2) we write
their power series representations and multiply as we
would multiply two polynomials:(

1 +
x

1!
+
x2

2!
+ · · ·

)(
1− x2 + x4 − x6 + · · ·

)
= 1 + x+

x2

2
− x2 − x3 +

x3

6
+ x4 − x4

2
+
x4

24
+ · · ·

= 1 + x− x2

2
− 5x3

6
+

7x4

24
− · · · .

multiplication property of equality Let
A,B,C be any algebraic expressions and assume
also that C 6= 0. Then, if A = B, then A ·C = B ·C.

multiplication property for inequalities Let
A,B,C be any algebraic expressions and assume
also that C 6= 0. (1) If A ≤ B and C > 0, then
A · C ≤ B · C; (2) If A ≤ B and C < 0, then
A · C ≥ B · C.
Similar statements are true also in the case of other
types of inequalities: <,>,≥. Example: 2 < 5 but
2 · (−3) = −6 > 5 · (−3) = −15.

multiplication rule for probabilities Let A and
B be two independent events. Then the probability
that both of these events will happen is given by the
formula

P (A ∩B) = P (A) · P (B).

This formula extends to any number of independent
events. For the case when the events are not indepen-
dent the general multiplication rule for probabilities
works. Another notation for multiplication rule is
P (A andB) = P (A) · P (B).

multiplicative identity An element, that multi-
plied by any other element of the given set, does not
change it. For the sets of real or complex numbers
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the real number 1 serves as a multiplicative identity.
For the set of square matrices, the identity matrix is
the multiplicative identity.

multiplicative inverse An element b of some set
is the multiplicative inverse of some other element,
a, if a · b = b · a = 1, where by 1 the multiplicative
identity is denoted. For the set of real numbers the
inverse of a is denoted by a−1 or 1/a and it exists for
all numbers except a = 0. For matrices, the inverse
is denoted by A−1.

multiplicity of eigenvalue See eigenvalues of
matrix.

multiplicity of a zero Let p(x) be a polynomial of
degree n ≥ 1. Then, by the Fundamental theorem of
Algebra it could be factored as a product of exactly n
linear binomials: p(x) = a(x−c1)(x−c2) · · · (x−cn),
where c1, c2, ..., cn are some complex numbers and
p(ck) = 0, k = 1, 2, ...n. If any of these factors repeat,
then the corresponding cj is called multiple zero of
the polynomial. The number of times this factor ap-
pears in factorization is the multiplicity of this zero.
Example: In polynomial p(x) = (x−1)(x+1)2(x−2)3

the zeros are x = 1, x = −1, x = 2 and they have
multiplicities 1,2 and 3 respectively.

multiplying factor See integrating factor.

mutually exclusive events Two events are mu-
tually exclusive, if they cannot happen at the same
time. Complementary events are always mutually
exclusive, but this is also true for other events.
When rolling a die, the outcomes 2 and 4 are not
complementary but they are mutually exclusive.

N

natural exponential function The exponential
function with the base equal to e and notation y = ex.
In calculus, natural exponential functions allow to
simplify many calculations. In particular, (ex)′ = ex

and
∫
ex dx = ex + C.

natural growth law See exponential decay, expo-
nential growth.

natural logarithmic function The logarithmic
function with the base equal to e and special nota-
tion: loge x = lnx. In calculus, natural logarithms
allow to simplify many calculations. In particular,
we have (lnx)′ = 1/x and∫

lnx dx = x lnx− x+ C.

natural number The numbers 1, 2, 3, 4 · · ·. This
sequence of numbers goes indefinitely and there is no
greatest number in it. Also are called counting num-
bers.

negative angle If the angle is placed in standard
position and the terminal side is moved in negative
(clockwise) direction, then the angle is considered
negative. See also angle.

negative definite function A function F (x, y)
defined on some domain D containing the origin is
negative definite, if F (0, 0) = 0 and F (x, y) < 0 ev-
erywhere else in D. If F (x, y) ≤ 0, then the function
is negative semidefinite. See also positive definite.

negative definite matrix A symmetric matrix A
is negative definite, if for any vector x 6= 0, xTAx <
0. If the inequality is substituted by ≤, then the ma-
trix is negative semidefinite. Here xT indicates the
transpose of the column vector x. See also positive
definite matrix.

negative number A number that is less than zero.
Equivalently, any number that could be placed on the
number line to the left of the origin.
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Newton’s law of cooling According to this law,
discovered experimentally, the rate of cooling (loss of
temperature) of a body is proportional to the differ-
ence of temperatures of the body and the surround-
ing environment (if this difference is relatively small).
Mathematically, this law could be expressed by the
differential equation

dT (t)

dt
= −k(T − T0),

where T (t) is the temperature of the body and T0 is
the surrounding temperature. The solution is given
by T (t) = T0 + (T (0)− T0)e−rt.

Newton’s laws of motion The laws of classical
mechanics established by I.Newton. See also New-
ton’s second law.

Newton’s method A method for finding approx-
imate solutions of some equation f(x) = 0, where f
is some sufficiently smooth function, not necessarily
a polynomial. If the solutions of this equation are
not possible by some exact method, then in many
cases Newton’s method gives good approximations.
The procedure is as follows. If we are trying to find
the solution of the equation and we have two values
a and b, where f(a) and f(b) have opposite signs,
we know (by the intermediate value theorem) that
there is a solution to the equation f(x) = 0 in the
interval (a, b). Choose any of the endpoints to be our
first approximation to the solution and denote it by
x1. If f(x1) 6= 0, then we choose the second point of
approximation using the intersection of the tangent
line to f at the point x1 with the x-axis. This point,
which we denote by x2, will be given by equation
x2 = x1 − f(x1)/f ′(x1). Continuing the same way,
we have a sequence, given by recurrence formula

xn+1 = xn −
f(xn)

f ′(xn)
, n = 1, 2, 3, ...

This procedure does not always give good approxi-
mation to the solution. The following statement indi-
cates conditions under which the procedure converges
to the solution and also gives estimate of how exact
the approximation is.
Theorem. Suppose f ′(x) and f ′′(x) do not change

their signs, |f ′(x)| ≥ m > 0 and |f ′′(x)| ≤ M for all
values of x in some interval (x0, x1). Assume that
f(x0) and f(x1) have opposite signs, while f(x1)
and f ′′(x1) have the same sign. Then there exists
a point c in (x0, x1) with f(c) = 0. Moreover, if
|x1 − x0| ≤ m/M , then the successive approxima-
tions by Newton’s method x1, x2, x3, · · · approach c
and |xn+1 − c| ≤ |xn+1 − xn|.

Newton’s second law The force on the object is
equal to its mass multiplied by the acceleration of
that object.

nilpotent matrix A square matrix A such that
An = 0 for some positive integer n ≥ 1.

nondegenerate conic section The opposite of
degenerate conic sections. All the regular conic sec-
tions (ellipses, parabolas, hyperbolas) are nondegen-
erate.

nondifferentiable function A function that is
not differentiable. Among the reasons for a function
to be nondifferentiable are: failure to be continuous
at the point, having ”wedges” at the point. There
are continuous functions, that are not differentiable
at any point.

nonhomogeneous algebraic equations The sys-
tem of linear equations where not all right sides are
zero. See also homogeneous algebraic equations.

nonhomogeneous linear differential equation
The equation of the form

y′′ + p(x)y′ + q(x)y = g(x),

or a similar one with higher order derivatives. In case
when g(x) = 0, the equation is homogeneous.

noninvertible matrix Also called singular matrix.
A matrix such that the inverse does not exist. See
also corresponding entry.

nonlinear differential equation Any differential
equation where the unknown function or any of its
derivatives appear in a nonlinear form. Examples
could be

y′′ + 2(y′)2 = 0, y′′ + y′y = 2.
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The nonlinear equations could be categorized by the
highest degree of the derivative involved, by the ex-
istence or non-existence of the function on the right
side, and many other criteria, just as in the case of
linear equations. The theory of nonlinear equations
is not as complete as the theory of linear equations
and solving different equations requires involvement
of different methods. These include the method of
linearization, and solutions of autonomous equations
and systems. For more details see the corresponding
entries.

nonsingulal matrix A (square) matrix, that has
an inverse. Opposite of the singular matrix.

nontrivial solution Many differential equations
have two types of solutions: one is a meaningful func-
tion and the other one is a constant or even iden-
tically zero solution. These last type solutions are
called trivial and the first type solutions are nontriv-
ial solutions. Example: The equation y′ = −y2 has
the trivial solution y = 0 and nontrivial solutions
y = 1/(x+ C) for any real constant C.

norm of a vector If v is a vector in some vec-
tor space V with coordinates (v1, v2, · · · , vn), then its
norm is defined to be the non-negative number

||v|| =
√
v21 + v22 + · · ·+ v2n.

In the case when V is an inner product vector space,
||v|| = 〈v,v〉1/2. Also called the length or magnitude
of the vector.

normal The same as normal vector.

normal density function The function that de-
scribes the normal distribution. Mathematically it is
given by the function of the form

f(x) = ce(x−a)
2

,

where c and a are constants specifically chosen to
satisfy the conditions of probability distributions. For
more precise definition see bell shaped curve.

normal derivative The directional derivative in
the direction of the normal vector.

normal distribution The continuous probabil-
ity distribution expressed by the normal density
function. The probabilities for this distribution are
calculated as areas under the curve. For example, if
we want to know what is the probability of choosing
a point between the values a and b, then we calculate
the area under the curve between a and b. These
areas are calculated with the use of tables, graphing
calculators or computers. See also standard normal
distribution.

normal matrix A matrix A is normal, if AA∗ =
A∗A. Here A∗ denotes the conjugate of the transpose
of the matrix. In case of real matrices, A∗ is just the
transpose of A.

normal probability curve The curve that is the
graph of the normal density function. See the defini-
tion and the picture above.

normal system For any system of linear equations
written in the matrix form Ax = b the associated
equation

ATAx = ATb

is called the normal system. Here AT is the transpose
of A. The normal system is important in finding the
least square solutions of the system.

normal vector A vector that is orthogonal to a
curve or a surface. In case of the plane curve this
means that the vector is perpendicular to the tan-
gent line at a given point of the curve. In three di-
mensional space orthogonality neans that the vector
is perpendicular to the tangent plane to the surface
at some point of that surface. A line in the direction



101

of the normal vector is called normal line.

normalization To make a system of orthogonal
vectors orthonormal, the procedure of normalization
is necessary. For that we just divide each vector from
orthogonal system by its norm and the resulting vec-
tors will have norm 1. See Gram-Schmidt process for
the details. This term can also be used in other con-
texts where the notion of ”normal” is appropriately
defined.

nullity Let T be a linear transformation in some
vector space V and K denotes the kernel of that
transformation. The dimension of the kernel is called
nullity.

null hypothesis In statistics, a hypothesis (state-
ment, assumption) that a certain population param-
eter has some value. This hypothesis is usually de-
noted byH0 and has the form parameter=some value.
For example, if the hypothesis is about the population
mean, then H0 : µ = µ0. Sometimes the hypothesis
is given also in the form µ ≥ µ0 or µ ≤ µ0. See also
alternative hypothesis, hypothesis testing.

null set The set that contains no elements. Has the
same meaning as empty set and the same notation ∅.

nullspace Let A be an m × n matrix and x be a
vector in Rn. The solution space of the equation
Ax = 0 is the nullspace of the matrix. The nullspace
is the subspace of Rn which is translated to zero by
the action of the matrix (linear transformation) A.
See also kernel of linear transformation.

number The most basic object in mathematics.
The numbers are impossible to define, they rather
could be described. We distinguish two major sets
of numbers: the real numbers and the complex num-
bers with the understanding that the first set is a
subset of the second one. Additionally, the real num-
bers consist of subsets of irrational and rational num-
bers. Rational numbers further have the subsets of
integers, whole numbers, natural numbers and prime
numbers. See the corresponding entries for defini-
tions. The visual presentation of real numbers is done
by expressing them as points on the real line, and the
complex numbers can be expressed as points on the
complex plane.

number theory The branch of mathematics that
deals with the properties of whole numbers. Despite
the fact that this is one of the oldest branches of
mathematics, there are several unresolved problems,
concerning properties of whole numbers. Among
them, the famous Riemann hypothesis deals with
properties of prime numbers.

numerator For a fraction or a rational function,
the top part in the fractional expression. In number
7
13 , 7 is the numerator and 13 is called denominator.
In function

3x4 − 2x2 + x− 5

x5 + 2x2 − 1

the polynomial 3x4 − 2x2 + x− 5 is the numerator.

numerical coefficient Same as coefficient.

numerical integration Calculation of definite
integrals approximately, when exact calculations are
impossible or difficult. The same as approximate
integration.

numerical methods General term for indicating
various methods of solving equations when analytic
(sometimes algebraic) solutions are either impossible
or very complicated. For solutions of algebraic
equations see, e.g., Newton’s method. For numerical
solutions of differential equations see Euler method.
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O

oblique asymptote Also called slant asymp-
tote. The line y = ax + b is an oblique asymp-
tote for the function f(x) if one or both of
the relations limx→∞[f(x) − (ax + b)] = 0 or
limx→−∞[f(x) − (ax + b)] = 0 hold. This rela-
tions mean that for large values of x (positive
or negative) the value of the function is approxi-
mately the same as the value of the linear function
y = ax + b. A function may or may not cross its
oblique asymptote. Examples: (1) The function

f(x) = x2+1
x+1 = (x− 1) + 2

x+1 has oblique asymptote
y = x − 1 but it never crosses that line. (2) The
function f(x) = x − 1 + sin x

1+x2 has the same oblique
asymptote y = x − 1 and they intersect infinitely
many times.

oblique triangle A triangle where no two angles
and no two sides are equal

observational study In statistics, when the
researcher collects data by just observing the ob-
jects, without actively trying to affect the outcome.
Surveys and polls are examples of observational
studies.

obtuse angle An angle that measures between
90◦ and 180◦ in degree measure or between π/2 and
π in radian measure.

obtuse triangle A triangle that contains an
obtuse angle.

octant The Cartesian coordinate system in the
tree-dimensional space creates tree coordinate planes
given by the equations x = 0, y = 0 and z = 0 which
intersect at the origin. These three planes divide the
space into eight parts called octants.

odd function A function f(x) of real variable
that satisfies the condition f(−x) = −f(x). This
condition means that the graph of the function is
symmetric with respect to the origin. The functions
f(x) = sinx and f(x) = x3 are examples of odd
functions.

odd permutations A permutation that is the re-
sult of odd number of transpositions. Equivalently,
could be defined as a result of odd number of inver-
sions.

one-sided limit See left-hand limit and right-hand
limit.

one-step methods In approximate (numeric) so-
lutions of differential equations any method that re-
quires the knowledge of values only in one previous
step to find values on the next step. The most com-
mon example is the Euler method.

one-to-one function Let f(x) be a function de-
fined on some (possibly infinite) interval [a, b]. It
is one-to-one on the interval, if for any two points
x1 6= x2 inside that interval f(x1) 6= f(x2) and if
f(x) = f(y), then x = y. In other words, one-to-one
functions cannot take the same value more than once.
Examples: The functions f(x) = ax + b, f(x) =
2x, f(x) = lnx are all one-to-one. On the other
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hand, the function f(x) = x2 is not one-to-one, be-
cause for any positive number a, x2 = a gives the so-
lutions x =

√
a and x = −

√
a. One-to-one functions

are important because they possess inverse functions.

one-to-one transformation A linear transforma-
tion T : V →W is one-to-one, if it transforms differ-
ent points of V to different points of W . One-to-one
transformations are invertible.

open interval Intervals of the form (a, b) where
the endpoints are not included. In this case one
or both endpoints may be infinite, so the intervals
(a,∞), (−∞, b) and (−∞,∞) are considered open.

open region A region is called open if for any point
P in that region there exists a circle with center at
that point that lies completely in the region. The
region D = {x2 + y2 < 1} is open but the region
G = {x2 + y2 ≤ 1} is not, because for the latter for
points P on the boundary x2 +y2 = 1 any circle with
that center is only partially contained in the region.

operator See linear transformation.

opposite A term that could be used with different
meanings in different situations. Most commonly is
used as an opposite of a real number a which is −a.
The opposite of 5 is −5 and the opposite of −2 is
−(−2) = 2.

optimization problem Any problem where the
objective is to find the greatest or smallest possible
values of certain variable quantity.

order of a polynomial See degree of a polyno-
mial.

order of differential equation The highest order
of derivative present in the given differential equa-
tion. In the equation

y′′′ − 2x2y′ + sinxy = cosx

the order is 3 because y′′′ is the highest order deriva-
tive in that equation.

order of integration In double (or, more gener-
ally, multiple) integrals the order in which the re-
peated (iterated) integration is performed. See Fu-
bini’s theorem for conditions justifying the change of

the order of integration.

order of operations Set of rules that determine
the way arithmetic and algebraic operations are per-
formed to avoid ambiguity in calculations. According
to this rules the operations are done in the following
succession:
1) Parentheses (includes also brackets and braces)
from inside out;
2) Exponents;
3) Multiplication and division (left to right);
4) Addition and subtraction (left to right).
Example: 25 − 23 · 3 ÷ (8 + 4) = 25 − 23 · 3 ÷ 12 =
25− 8 · 3÷ 12 = 25− 24÷ 12 = 25− 2 = 23.

ordered pair Two real numbers a and b grouped
together and enclosed in parentheses: (a, b). The or-
der of the numbers is important and (a, b) is differ-
ent from (b, a). Each ordered pair defines uniquely
a point in the Cartesian plane and, conversely, each
point corresponds to an ordered pair where the num-
bers are the coordinates of the point. This notion
extends to ordered triples also where they now cor-
respond to points in three dimensional space. Simi-
larly, we can generalize it to the case of ordered n-
tuples which correspond to points in n-dimensional
Euclidean space.

ordinary differential equation A differential
equation that involves only functions and derivatives
of functions of one independent variable.

ordinary point For linear differential equations
with variable coefficients. Suppose we need to find
the series solution for the equation

P (x)y′′ +Q(x)y′ +R(x)y = 0

about the point x = x0. That point is called ordinary
point if P (x0) 6= 0. See the entry series solution for
details how this fact is used in finding solutions.

ordinate In the plane Cartesian coordinate sys-
tem, the name of the y-axis.

orientation of a curve See positive orientation of
a closed curve.

orientation of a surface See positive orientation
of a closed surface.
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origin In any coordinate system, the point from
where we start measurements. In particular, in
Cartesian system origin is the point usually denoted
by number 0. In the case of the plane system, for
example, the origin is the point of intersection of x−
and y−axes and has the coordinates x = 0 and y = 0.
Hence, the origin is the point corresponding to the or-
dered pair (0, 0).

orthogonal A term that substitutes the term per-
pendicular when we deal mainly (but not exclusively)
with vectors.

orthogonal basis A basis {u1,u2, . . . ,un} of a
linear space V is said to be orthogonal if any pair
of vectors in that basis is orthogonal, i.e. ui · uj = 0
for any 1 ≤ i, j ≤ n, i 6= j. See also basis.

orthogonal complements Let V be an inner
product vector space and W its subspace. The set
of all the vectors in V that are orthogonal to W is
the orthogonal complement of W . The orthogonal
complement of any subspace is itself a subspace.

orthogonal curves Two curves are orthogonal at
a point where they intersect, if the tangent lines of
that curves at that point are perpendicular. Exam-
ple: The hyperbola y = 1/x and the line y = x are
orthogonal at their poit of intersection (1, 1).

orthogonal diagonalization Let A be a square
matrix and assume that there exists a orthogonal ma-
trix P such that the matrix P−1AP = PTAP is di-
agonal. Then A is called orthogonally diagonalizable
and the process is called orthgonal diagonalization.
It is known that being orthogonally diagonalizable is
equivalent of being symmetric.

orthogonal matrices A square n × n matrix A
is orthogonal if its inverse is equal to its transpose:
A−1 = AT . Equivalently, AAT = ATA = I, the
identity matrix. Orthogonal matrices have many im-
portant properties listed below:
(1) The inverse of an orthogonal matrix is orthogo-
nal;
(2) The product of orthogonal matrices is orthogonal;
(3) The determinant of an orthogonal matrix is equal
1 or -1;
(4) Both the row vectors and column vectors of the

matrix A form an orthonormal set in Rn.
Example: The matrix(√

3/2 −1/2
1/2

√
3/2

)
is orthogonal.

orthogonal projection Let v be a vector in Rn

and suppose we map that vector onto a line formed
by another vector a not parallel to v. Denote the
resulting vector by projav = b. If this mapping is
performed in such a way that the vectors v and b
are orthogonal, then the mapping is called orthogonal
projection. The orthogonal projection of a vector on
a plane is defined in a similar manner.
Example: The operator of orthogonal projection of
any vector (x, y) on the plane onto the x-axis maps
that point onto the point (x, 0). The standard matrix
of that operator is (

1 0
0 0

)

orthogonal vectors Two vectors u and v are or-
thogonal if they form a 90◦(π/2) angle. Equivalently,
cosine of the angle between these two vectors is zero.
This last condition is also expressed with the use of
the dot product :

cos θ =
u · v
||u||||v||

= 0,

where ||u|| is the norm (magnitude, length) of the
vector u.

orthogonality of functions Two functions f(x)
and g(x) defined on some interval [a, b] (finite or in-
finite) are called orthogonal, if∫ b

a

f(x)g(x)dx = 0.

Many systems of functions are orthogonal in this
sense. Among them the trigonometric system
{cosnx, sinnx}, n = 0,±1,±2 · · · (on the inter-
val [0, 2π]), Chebyshev polynomials (on the interval
[−1, 1]), Bessel functions, and Legendre polynomials
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(on appropriate intervals).

orthonormal basis A basis {u1, u2, · · · , un} of a
linear space V is said to be orthonormal if any pair
of vectors in that basis is orthogonal (in other words,
the basis is orthogonal), and each of them has norm
equal to one: ||uj || = 1, j = 1, 2, · · · , n. See also basis
and Gram-Schmidt process.

osculating plane For some smooth space curve let
N and T denote the normal and tangent vectors at
some point respectively. Then the plane formed by
this two vectors is called osculating.

outliers In statistical data all the values that are
significantly different (too big or too small) than the
most of data are outliers.

overdamped vibration If a particle oscillates and
some additional forces, such as friction, affect its
movement, then this kind of vibration is damped vi-
bration and it’s given by the equation

my′′ + cy′ + ky = 0.

In case when the discriminant of the characteristic
equation c2 − 4mk < 0, then the vibration is called
overdamped. In this case the characteristic roots are
negative and the solution has the form

y = e−(c/2m)t(c1 cosωt+ c2 sinωt),

and they are quasiperiodic.

overdetermined linear systems A system of
linear equations where there are more equations
than unknown variables. In most cases the overde-
termined systems do not have solutions. See also
underdetermined linear systems.

overlaping sets Two or more sets that
have common elements. For example, the sets
A = {x| − 5 < x ≤ 2} and B = {x|0 ≤ x ≤ 7}
overlap, because the set {x|0 ≤ x ≤ 2} belongs to
both of them. The common set is called intersection
of two sets and is denoted by A ∩B.

P

paired data In statistics has the same meaning as
the ordered pairs in algebra. The distinction is made
because in statistics the paired data comes from col-
lection of samples while in algebra the ordered pairs
need not have any particular meaning. For the use
of paired data see scatterplots.

Pappus’ theorem Let D be a region of the plane
that lies entirely on one side of a line ` in that plane.
If D is rotated about `, then the volume of the re-
sulting solid is the product of the area A of D and
the distance d traveled by the centroid of D.

parabola One of the three main conic sections.
Geometrically, a parabola is the location (locus) of
all points in a plane that have the same distance from
a given line (called parametrix) and a point (called
focus) not on that line. Equivalently, the parabola
could be described as the result of cutting a double
cone by a plane that is parallel to the generators of
the cone, and not passing through vertex of the cone.
Alternative geometric definition could be given with
the use of eccentricity. See corresponding definition.
Algebraically, the general equation of a parabola is
given by the quadratic equation Ax2 +Bxy+Cy2 +
Dx+Ey+F = 0, where A, B, C, D, E, F are real
constants and A ·C = 0. This means that one of the
terms Ax2 or Cy2 is missing. The case when both
A and C are zero is a case of degenerate conic. In
the case when the directrix is parallel to the x-axis
with the equation y = −p and the focus is located
on the y-axis at the point (0, p), the equation of the
parabola translates into the standard form

y =
1

4p
x2.

Similarly, if the directrix is parallel to the y-axes and
the focus is on the x-axis, the equation will be x =
1/4py2. The point where the parabola touches one
of the axes is called the vertex. In the more general
case when the vertex is shifted, the above equations



106

transform to one of the following:

y − k =
1

4p
(x− h)2, x− h =

1

4p
(y − k)2.

All of the above cases happen when in the general
equation the term Bxy is missing. In the case B 6= 0
the result is still a parabola, which is the result of
rotation of one of the previous simpler cases.
The parabola could also be given by its polar equa-
tion:

r =
d

1± cos θ
or r =

d

1± sin θ
,

where d > 0.

parabolic cylinder The three dimensional surface
given by (for example) the equation

a2x2 = b2z.

paraboloid See elliptic paraboloid.

parallelepiped A three dimensional solid, similar
to rectangular box. Difference is that if for rectan-
gular solid each face is a rectangle, for parallelepiped
each face is a parallelogram.

parallel lines Two lines on the plane that do not
intersect. If two lines are parallel then they have the
same slope. Example: The lines y = −2x + 1 and
y = −2x− 27 are parallel.

parallel planes Two planes in the space are paral-
lel if they do not intersect. If a1x+b1y+c1z = d1 and
a2x+b2y+c2z = d2 are equations of two planes, then
they are parallel if and only if a1/a2 = b1/b2 = c1/c2
but are not equal to d1/d2.

parallel vectors Two vectors u and v are parallel

if there exists a real scalar c such that u = cv. For
parallel vector the angle between them is either 0 or
π(180◦).

parallelogram A quadrilateral where two pairs
of opposite sides are parallel. In parallelogram the
opposite sides are equal. In the particular case when
all four sides have the same size, the parallelogram
is called a rhombus.

parallelogram law See addition and subtraction
of vectors.

parameter In mathematics parameters can be de-
scribes as something in between constants and vari-
ables. This means that depending on situation the
parameter could either be fixed at some numeric
value or start changing its values. In the expression∫ ∞

0

e−λxdx

λ is a parameter and x is the variable of integration.
For other case where the term parameter is used in
slightly different meaning see parametric equations.

parametric curve See parametric equation.

parametric equation Many curves that by dif-
ferent reasons cannot be expressed as a graph of
a function, can be expressed by parametric equa-
tions. Suppose C is a plane curve and the coordi-
nates (x, y) of the curve are given by the functions
x = f(t), y = g(t), where f and g are some functions
of the variable t on some interval I. The equations for
x and y are called parametric equations of the curve
C and t plays the role of parameter in this case.
Examples: (1) The circle given by x2 + y2 = 1 could
be written in parametric form as x = cos θ, y =
sin θ, 0 ≤ θ ≤ 2π.
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(2) The parametric equations x = t2 − 1, y =
t/2, −2 ≤ t ≤ 3 represent a portion of the parabola
opening to the right.

parametric surface In three dimensional space,
the variables (x, y, z) on some surface S sometimes
could be written in the form x = f(u, v), y =
g(u, v), z = h(u, v), where (u, v) are parameters from
some region G. If this is possible then the surface S is
called parametric and the above equations are called
parametric equations of the surface.

parametrization The process of changing regular
equation to parametric equation.

parentheses The symbols ( ). One of the grouping
symbols along with brackets and braces. Primarily
is used to separate certain numbers and variables to
indicate operations to be done first.

partial derivative For functions of two or more
variables there is no notion of the derivative but in-
stead partial derivatives are considered for each vari-
able. Let f(x, y) be a function of two independent
variables and assume that the limit

lim
h→0

f(x+ h, y)− f(x, y)

h

exists for any fixed y. Then this limit is called the
partial derivative of f with respect to the variable x.

The notations fx(x, y) or ∂f(x,y)
∂x and some others are

used. The partial derivative fy(x, y) is defined simi-
larly. The definitions of partial derivatives are similar
for functions of three or more variables.

partial differential equation A differential equa-
tion that involves functions of several variables and
their partial derivatives. See also heat equation,
Laplace’s equation, harmonic functions.

partial fraction expansion Any rational function
of the form R(x) = P (x)/Q(x), where P and Q are
polynomials, could be written in the form of the sum
of simpler rational functions, called partial fractions.
In order to find this decomposition, as a first step we
need to assure that the fraction is proper and if it is
not, perform the division and deal with the remainder
only, which is necessarily proper. On the next step
we factor the denominator into linear and quadratic

factors. Depending on types of factors we have dif-
ferent types of partial fraction decompositions.
(1) All the factors are linear and none of them is re-
peated: (a1x+b1)(a2x+b2) · · · (akx+bk). In this case
the rational function will have the decomposition

R(x) =
A1

a1x+ b1
+

A2

a2x+ b2
+ · · ·+ Ak

akx+ bk
,

where A1, A2, · · · , Ak are just constants.
(2) All the factors are linear but some of them are
repeated (possibly many times). Suppose the factor
ax+b is repeated k, i.e., the denominator has the fac-
tor (ax+b)k. Then the decomposition corresponding
to this particular factor will have the form

A1

ax+ b
+

A2

(ax+ b)2
+ · · ·+ Ak

(ax+ b)k
.

The partial fractions corresponding to the non-
repeated linear factors will be as in the first case.
(3) The denominator has non-reducible quadratic fac-
tor ax2+bx+c. Then the partial fraction correspond-
ing to this particular factor will have the form

Ax+B

ax2 + bx+ c
.

(4) The denominator has a repeated quadratic fac-
tor (ax2 + bx + c)k. Then the corresponding partial
fraction will have the form

A1x+B1

ax2 + bx+ c
+ · · ·+ Akx+Bk

(ax2 + bx+ c)k
.

Examples: 1) To expand the rational function

f(x) =
x+ 7

x2 − x− 6
=

x+ 7

(x− 3)(x+ 2)

we write

x+ 7

(x− 3)(x+ 2)
=

A

x− 3
+

B

x+ 2
,

where A,B are yet to be determined coefficients (this
is called the method of undetermined coefficients).
Multiplying both sides by the common denominator
we get x + 7 = A(x + 2) + B(x − 3) and expanding
and equating coefficients of similar powers we get a
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system of two linear equations with unknowns A and
B:

A+B = 1

2A− 3B = 7

This system has solution A = 2, B = −1 and we
have

f(x) =
2

x− 3
+
−1

x+ 2

which is the partial fraction decomposition for the
function f(x).
2) The function

f(x) =
5x2 + 20x+ 6

x(x+ 1)2

should have the expansion

f(x) =
A

x
+

B

x+ 1
+

C

(x+ 1)2
.

Again, multiplying both sides by the common denom-
inator and equating the coefficients we will get a sys-
tem of three linear equations with unknowns A,B,C.
Solving the system we will have A = 6, B = −1, C =
9 and the decomposition

f(x) =
6

x
+
−1

x+ 1
+

9

(x+ 1)2
.

3) For the function

f(x) =
8x2 + 13x

(x2 + 2)2

we have the expansion

f(x) =
Ax+B

x2 + 2
+

Cx+D

(x2 + 2)2

and the same method as before gives A = 8, B =
0, C = −3, D = 0. Now, the expansion is

8x2 + 13x

(x2 + 2)2
=

8x

x2 + 2
+

−3x

(x2 + 2)2
.

See also integration by partial fractions.

partial integration See integration by parts.

partial sum of a series For an infinite series∑∞
k=1 ak the sum of the first n elements Sn =∑n
k=1 ak. Here the terms ak may be constants or

variable terms such as powers of the variable x.

particular solution For non-homogeneous differ-
ential equations of the type

y′′ + p(x)y′ + q(x)y = g(x)

is any solution of this equation. The importance of
particular solution is that the general solution of this
linear equation is the sum of that particular solution
and the general solution of the corresponding homo-
geneous equation

y′′ + p(x)y′ + q(x)y = 0.

partitioned matrix A matrix that is divided into
smaller parts, usually called blocks. A matrix could
be partitioned in many different ways depending on
the need.

Pascal’s triangle A triangular table of binomial
coefficients for easy calculation of binomial expan-
sion. Each entry at the ends of this table is 1, and
any other entry is the sum of two entries right above
itself.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

· · · · · · · · · · · · · · · · · · · · · · · ·

Example: If we want to expand (x+y)4, then we use
the numbers on the 5th row and get

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

path Any curve could be called a path. Most com-
monly the term is used to indicate a piecewise-smooth
(differentiable) curve.

pendulum equation An equation that describes
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the movement of a pendulum. Depending on assump-
tions, the form of the equation may vary. If a pendu-
lum consists of a mass M that is hanging on one end
of a weightless rod of the length L and the angle of
displacement from the vertical position is denoted by
θ, then the movement of the pendulum is described
by the equation

dθ

dt2
+ γ

dθ

dt
+ ω2 sin θ = 0. (1)

Here ω2 = g/L, where g is the gravitational constant
and the constant γ depends on the damping force act-
ing on the mass m. This equation is called nonlinear
damped pendulum equation. For small θ this equa-
tion could be linearized by substituting θ instead of
sin θ and the corresponding equation

dθ

dt2
+ γ

dθ

dt
+ ω2θ = 0 (2)

is called linear damped equation. If the damping
coefficient γ (and the corresponding term in (1) or
(2)) is removed, then equation (1) becomes nonlin-
ear undamped and (2) becomes linear undamped. In
this last case the solution of the resulting equation
θ′′ + ω2θ = 0 is the function

θ(t) = A cosωt+B sinωt

and is called simple harmonic motion. Its period is
the number T = 2π/ω.

percent One hundredth part of a number. The no-
tation n% means n/100. Examples: 27% = 27/100 =
0.27, 436.7% = 436.7/100 = 4367/1000 = 4.367.

percentile Suppose we have a large set of numeric
values organized in increasing order. We can divide
this set into hundred parts by putting ”almost equal
number” of values in each part. If we denote the
first point of division by P1, second point of division
by P2 and so on, then we will get 99 points of divi-
sion P1, P2, · · · , P99. The points between the smallest
value and P1 belong to the first percentile, the points
between P1 and P2– to the second percentile, and so
on, until we get to the 100th percentile which consists
of values between P99 and the largest value in the set.
Obviously, this is possible only if the set has at least

100 values and even for large sets it is impossible to
divide the set into 100 exactly equal parts. See also
quartiles.

perfect numbers A number is called perfect if it
is the sum of all of its positive divisors except the
number itself. 6 is perfect because it has divisors 1,
2, 3 and 1+2+3=6. Also 28, 496 and 8128 are per-
fect numbers. There are only a few perfect numbers
known and it is not known if there are finite or infi-
nite perfect numbers.

perimeter Usually, the length of a closed curve. In
some cases just means the curve itself. To find the
perimeter of some geometric figure means to find the
length of the curve that bounds that geometric fig-
ure. The perimeter of any polygon is calculated by
simply adding the lengths of segments that form the
polygon. For example, if the polygon is a quadrilat-
eral, then the perimeter is the sum of lengths of all
four sides. In cases more complicated than a poly-
gon, usually only the use of calculus allows to find
the perimeter. See arc length for details.

period Let the function f has the property that
there exists positive real number m such that

f(x+m) = f(x)

for all x in the domain of f . The smallest such
number m is called the period of the function f and
the function itself is called periodic with period m.
The functions sinx, cosx both have period 2π and
the functions tanx, cotx have period π.

period of simple harmonic motion See pendu-
lum equation.

periodic function See period.

permutation For a given set of integers
{1, 2, · · · , n} any rearrangement of the numbers
without repeating or omitting any of them, is called
a permutation of that set. Any permutation is
a combination of finite number of transpositions.
transposition is a simplest permutation when the
places of only two numbers are interchanged. See
also odd and even permutations.

perpendicular lines Two lines in the plane are
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perpendicular if they intersect and form a right
(90◦) angle. The slopes of perpendicular lines are
opposite reciprocals: If m1 and m2 are the slopes of
these lines then m1 ·m2 = −1. Example: The lines
y = 2x− 1 and y = − 1

2x+ 4 are perpendicular.

perpendicular vectors See orthogonal vectors.

phase shift For trigonometric functions. If the ar-
gument of the function y = sin t is shifted by adding
or subtracting a constant, such as in y = sin(t − a),
then this number a is the phase shift of the function.
Geometrically this means (for a > 0) that the graph
of the function is shifted to the right (”delayed”)
by a units. The same definition is true for all other
trigonometric functions.

pie chart One of the ways of visualizing data,
usually qualitative data along with bar graphs. The
picture below shows a data that could be put in
five categories and the size of the corresponding
shaded area shows the proportion of the values in
that category.

piecewise continuous function A function de-
fined on some interval I (finite or infinite) that is
continuous everywhere on the interval except finite
number of points (in case of bounded interval) or in-
finitely many points with no limit points inside the
interval (in case of unbounded interval). The saw-
tooth function, and the Heaviside function are exam-
ples of piecewise continuous functions.

piecewise defined function A function that is

defined differently on different parts of its domain.
The function

f(x) =

{
x2 − 1 if x ≥ 0
2x+ 5 if x < 0

is an example of piecewise defined function.

plane One of the basic objects of Euclidean geom-
etry along with points and lines. In Cartesian co-
ordinate system planes could be given by equations.
The most general equation of the plane is written
in the form ax + by + cz = d where a, b, c d are
any real numbers. Any plane could be uniquely de-
termined by three points (according to one of the
Euclidean postulates). The three coordinate planes
(xy, xz, yz) are given by the equations z = 0, y = 0
and x = 0 respectively. Any plane could be deter-
mined also by any point on that plane (P0(x0, y0, x0,
for example) and the normal vector to that plane.
Suppose P (x, y, z) is an arbitrary point on the plane
and r and r0 are the vectors corresponding to the
points P and P0. Then, if n is the normal vector to
the plane at the point P0, it is perpendicular to the
vector r−r0 and, as a result, their dot product is zero.
That relationship is the determining equation of the
plane and is given by the equation n · (r− r0) = 0.
This is called the vector form of the equation of the
plane. On the other hand, if the equation of the plane
is

ax+ by + cz = d,

then the normal vector n has the components (a, b, c).
The tangent plane to a surface at some point P is
a plane that passes through that point and is per-
pendicular (orthogonal) to the normal vector to the
surface at that point. If the equation of the surface
is given by the function z = f(x, y), then the equa-
tion of the tangent plane to that surface at the point
P0(x0, y0, z0) is given by the equation

z − z0 =
∂f

∂x
(x− x0) +

∂f

∂y
(y − y0).

Similar equation is valid also for surfaces given by the
equations F (x, y, z) = k.

point The most basic geometric object defined to
have no measurements. Points on the line, plane, or
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space could be given by their coordinates. Depending
on situation we have one, two, or three coordinates
respectively. For example, the point with the coor-
dinates (1, 2,−3) is point in three-dimensional space
and the point (−2, 5) is on the xy-plane.

point of inflection See inflection point.

point-slope equation of the line If the slope m
and a point (x1, y1) through which a line passes are
known, then the equation of that line is given by the
formula

y − y1 = m(x− x1).

See also line.

Poisson distribution A probability distribution
describing certain real life situations. If the distri-
bution has the mean λ and x denotes the number of
”successes”, then the probability

P (X = x) =
e−λλx

x!
.

The standard deviation of the Poisson distribution
is
√
λ.

polar coordinates Along with Cartesian co-
ordinate system, the most important method of
representing points on the plane. The system con-
sists of a point (the analog of the origin) called the
pole and a ray coming out from the pole, called polar
axis. By convention polar axis is drown horizontally
going to the right. To represent a point on the plane
in polar coordinates we measure the distance from
the point to the pole (usually denoted by r) and
measure the angle formed by the polar axis and
the line segment connecting the point and the pole
(usually denoted by θ). The angle could be measured
by either the radian measure or degree measure.
Also the ”distance” is allowed to be both positive
or negative (see explanations below). This way we
put each point into correspondence with a pair of
real numbers as in the case of Cartesian system.
The major difference is that while to each pair of
real number (r, θ) there is exactly one corresponding
point, the points themselves could be represented
in infinitely many ways. For example, the point
(2, π/4) could be also written as (2, π/4 + 2πn) for

any integer n because geometrically they represent
the same point. Additionally, the same point could
be written as (−2, 5π/4) because this means that we
move the angle 5π/4 radians (and this is opposite
to the angle π/4) and then move 2 units backwards
along the side of this angle. Additionally, the same
point now could be written as (−2, 5π/4 + 2πn).
The picture below shows the presentation of two
different points with angle measured in degrees.

There are simple relations between rectangular and
polar coordinates of a point. If the polar coordinates
are known, then rectangular coordinates are found by
the formulas

x = r cos θ, y = r sin θ.

Conversely, if the rectangular coordinates are known,
then

r2 = x2 + y2, tan θ =
y

x
.

This second pair of equations show why the polar
representations are not unique. The ”radius” r has
two possible values r = ±

√
x2 + y2 and the angle θ

has infinitely many possible values (differing by an
integer multiple of π).

polar equations Equations with respect of the po-
lar coordinates, most generally written in the form
F (r, θ) = 0. In practice, however, the equations are
usually written in a simpler form r = f(θ). Many
plane curves that are difficult (and sometimes im-
possible) to write in rectangular system have fairly
simple representations in polar coordinates. Addi-
tionally, many equations that are not functions in
rectangular system turn out to be simple functions
in polar coordinates. For example, the equation of
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the circle centered at the origin with the radius a
x2+y2 = a2 which is not a function, could be written
as a simple function r = a in polar coordinates. Here
are other examples of curves in rectangular and polar
coordinates: Line y = ax, θ = a, circle with center
(1, 0) and radius 1: (x− 1)2 + y2 = 1, r = 2 cos θ.
Most of the polar curves are usually difficult to repre-
sent and especially graph in rectangular coordinates.
For examples of more polar curves and their graphs
see the entries cardioid, limaçon, four leaf rose and
others.

polar form of a complex number See trigono-
metric form of a complex number.

polygon A geometric figure made up of three or
more segments of a straight line, connected at the
endpoints. Polygon with three sides is called a trian-
gle, with four sides - a quadrilateral, with five sides -
a pentagon, and so on. See also regular polygon.

polynomial The sum of finite number of combina-
tions of power functions. Polynomials, as a rule, are
written in the decreasing order of powers, but in some
cases it is convenient to write them in increasing or-
der. The general form of the polynomial of degree n
is

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

The polynomial p(x) = 5x4 − 3x2 + 2x+ 4 is a poly-
nomial of degree 4.

pooled estimator In statistics, when comparing
two proportions, means, variances, etc., often the val-
ues from two populations are ”pooled” together and
the resulting numeric values are called pooled esti-
mators. Example: Suppose we need to compare pro-
portions of two populations with the following infor-
mation. Sample sizes are are n1 and n2 respectively
and the numbers of ”successes” are m1 and m2. Ac-
cordingly, the proportions would be p1 = m1/n1 and
p2 = m2/n2. In this notations, the pooled success
proportion would be

ppooled =
m1 +m2

n1 + n2
.

positive angle An angle in standard position is

considered positive if the terminal side is achieved
by moving counterclockwise starting from the initial
side. See more details in the article angle.

positive definite form A quadratic form is posi-
tive definite if it is positive for all values of variables
xj except when all of them are zero:

n∑
i,j=1

aijxixj > 0

unless x1 = x2 = · · · = xn = 0. If the quadratic form
is represented by a matrix A then the corresponding
matrix is called positive definite. See also negative
definite matrix.

positive definite function A function F (x, y) de-
fined on some domain D containing the origin is pos-
itive definite, if F (0, 0) = 0 and F (x, y) > 0 every-
where else in D. If F (x, y) ≥ 0, then the function is
positive semidefinite. See also negative definite func-
tion.

positive definite matrix A symmetric matrix A
is negative definite, if for any vector x 6= 0, xTAx >
0. If the inequality is substituted by ≥, then the ma-
trix is positive semidefinite. Here xT indicates the
transpose of the column vector x. See also negative
definite matrix.

positive function A function that takes only pos-
itive values.

positive number A number that is greater than
zero.

positive orientation of a simple closed curve
is agreed to be the counterclockwise direction as we
move along the curve.

positive orientation of a closed surface is
agreed to be the one for which the normal vector
points outward from the region enclosed in surface.

power function The function f(x) = xn, where n
is a whole number, n = 0, 1, 2, · · ·.

power law of limits For any function f(x) and
positive integer n,

lim
x→a

[f(x)]n =
[

lim
x→a

f(x)
]n
.
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In the particular case when f(x) = x we have
limx→a x

n = an.

power series A series formed by the combinations
of power functions:

c0 + c1x+ c2x
2 + c3x

3 + · · ·+ cnx
n + · · ·

The numbers c0, c1, c2, · · · are called the coefficients
of the power series. Each power series converges on
some interval of the form −R < x < R, where R is
called the radius of convergence. Depending on coef-
ficients, the radius R may be zero (series converges
only at x = 0), infinite (series converges for any real
x), or finite. In this last case the series may or may
not converge at the endpoints x = −R or x = R (see
also radius of convergence). The power series could
be differentiated or integrated term-by-term just as
any polynomial. In the more general case, also power
series centered at and arbitrary point x = a are con-
sidered:

c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

This series has the exact same properties as the series
centered at zero.

prime number A natural number that cannot be
divided evenly by any other natural numbers except
1 and that number itself. All the other natural num-
bers are called composite. The number 1 is considered
neither prime nor composite. First few prime num-
bers are: 2,3,5,7,11,13,17,19,23,29,31... By the Fun-
damental theorem of arithmetic any natural number
is the product of prime numbers.

principal nth root Let a be a real number that
has at least one nth root. The principal nth root of
a is the one that has the same sign as a and denoted
by n
√
a. For a = 4 the number

√
4 = 2 is the princi-

pal square root because it is positive. For a = −27
the number 3

√
−27 = −3 is the principal cubic root

because it is negative.

principle of mathematical induction See math-
ematical induction.

principle of superposition for linear homoge-
neous differential equations states, that if y1 and y2

are solutions of that equation then so is their sum
function y1 + y2.

probability (1) One of the main branches of math-
ematics dealing with events which outcome is gov-
erned by chance.
(2) Probability of an event is the ”likelihood” that
that event will happen. It is measured by a numeric
value that varies between 0 and 1. The event that
cannot happen (an impossible event) has probability
zero and an event that is certain to happen has prob-
ability one. For discrete variables the probability of
some event A can be calculated by the formula

P (A) =
number of times A happened

number of total experiments
,

where by ”experiment” we understand observations
we produced to see if A happens. The simplest ex-
ample is tossing a coin multiple times and observing
how many times we get the ”tail” (the event A).
If the number of outcomes is some fixed number, such
as in the case of tossing a coin (exactly two possible
outcomes: ”head” or ”tail”), or rolling a dye (six
possible outcomes: the values from 1 to 6), then the
probability of an event could be calculated by the
formula

P (A) =
number of ways A happens

number of total outcomes
.

For operations with probability values see multipli-
cation rule for probabilities, addition rule for prob-
abilities. For probability distributions see the entry
distribution and the related entries mentioned in that
article. See also conditional probability.

probability model A mathematical model where
the numeric values used to construct that model are
probabilities of some events. For examples see bino-
mial distribution, Poisson distribution, normal dis-
tribution.

probability density function A function that is
determined by the probabilities of some event(s). The
defining properties of these functions are:
(1) The function is always non-negative;
(2) The area under that function is exactly one.
See also entries related to specific probability models.
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product The result of multiplication of two (or
more) objects. The objects may be real or com-
plex numbers, functions, matrices, vectors, etc. For
specific definitions in all of these cases see the en-
tries multiplication of complex numbers, of fractions,
of functions, of matrices and also cross product, dot
product, scalar product.

product formulas Also called product-to-sum for-
mulas. In trigonometry, the formulas

sinx sin y =
1

2
[cos(x− y)− cos(x+ y)]

cosx cos y =
1

2
[cos(x+ y) + cos(x− y)]

sinx cos y =
1

2
[sin(x+ y) + sin(x− y)]

cosx sin y =
1

2
[sin(x+ y)− sin(x− y)].

Similar formulas are also possible for other functions
but hardly ever used. See also trigonometric identi-
ties.

product rule For differentiation. If the functions
f and g are differentiable, then

[f(x)g(x)]′ = f(x)g′(x) + g(x)f ′(x).

Examples: (1) (x2 sinx)′ = 2x sinx+ x2 cosx,
(2) (tanx lnx)′ = sec2 x lnx+ 1/x tanx.

projection The mapping of a point onto some line
or plane. The most common projections are the or-
thogonal projections. See the corresponding entry for
the details and examples.

proper value See eigenvalue.

proportion A statement that two or more ratios
are equal. Ratios may contain just numbers or vari-
ables or even functions. Examples of proprtions are
3
5 = 6

10 ,
x
3 = 7

12 or the Law of Sines:

sinα

a
=

sinβ

b
=
sinγ

c
.

To solve a proportion means to find the unknown
quantity. For example, to solve the proportion x

3 =

7
12 we cross-multiply and get the equation 12x = 7 · 3
and x = 7/4.

P-value Also sometimes called probability value.
One of the methods of hypothesis testing. The P-
value is the probability of observing a value like the
given value (or even less likely) assuming that the null
hypothesis is true. The smaller the P-value the more
evidence is there to reject the null hypothesis. Big P-
values indicate that there is not enough evidence to
reject the null hypothesis (so we have to accept it).
Visually, the P-value is the area under the normal
probability curve from the observed vaue to infinity
(in the case of right-tailed test), the area from the
observed value to minus infinity (left-tailed test), or
the sum of areas in both directions (two-tailed test).

Pythagorean identities The trigonometric iden-
tities

sin2 θ + cos2 θ = 1

tan2 θ + 1 = sec2 θ

1 + cot2 θ = csc2 θ.

See also trigonometric identities.

Pythagorean theorem One of the most famous
theorems of geometry that states that the square of
the length of the hypothenuse of any right triangle is
equal to the sum of the squares of the lengths of the
two legs. Symbolically, if a, b represent the lengths of
legs and c is the length of the hypothenuse, then

a2 + b2 = c2.
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Q

quadrants The x−axis divides the Cartesian plane
into upper and lower half-planes. The addition of the
y−axis divides the plane again and as a result four
quadrants are formed. The quadrants are counted
starting with the one corresponding to inequalities
x > 0 and y > 0 and moving against the clock.

quadrantal angle Any angle in standard position
where the terminal side coincides with any of the co-
ordinate axes. Hence, quadrantal angles can measure
0◦, 90◦, 180◦, 270◦ or the same sizes plus any mul-
tiple of 360◦ in degree measure. In radian measure
quadrantal angles measure 0, π/2, π, 3π/2.

quadratic approximation Approximation of a
given function by a quadratic function (polynomial).
Taylor and Maclaurin polynomials of second degree
represent examples of quadratic approximation. For
example, for the exponential function f(x) = ex

the Maclaurin polynomial T2(x) = 1 + x + x2

2 is its
quadratic approximation near the origin.

quadratic equation The equation

ax2 + bx+ c = 0.

This equation always has solution(s) given by the
quadratic formula:

x =
−b±

√
b2 − 4ac

2a
.

The expression under the square root sign is called
the discriminant and it determines what kind of zeros
(solutions, roots) this equation has. (1) The equation
2x2 − 3x− 4 = 0 has, by the quadratic formula, two

distinct real solutions x = 3
4 ±

√
41
4 . (2) The equa-

tion x2 − 2x + 3 = 0 has two distinct complex roots
x = 1 ± i

√
2 and (3) the equation x2 − 2x + 1 = 0

has two repeated roots x = 1. For another method
of solutions of quadratic equations see also factoring

quadratic forms Quadratic form of n variables

x1, x2, · · · , xn is the expression of the form

n∑
i,j=1

aijxixj .

For the case of two variables x and y the quadratic
form is ax2 + by2 + cxy.

quadratic formula See quadratic equation.

quadratic function Also called quadratic polyno-
mial. The function of the form f(x) = ax2 + bx + c
where a, b, c are numeric coefficients (real or com-
plex) and x is the variable. The graph of the
quadratic function is a parabola. Every quadratic
function could be written in the standard form
f(x) = a(x − h)2 + k, where the point (h, k) is the
coordinate location of the vertex of the parabola.

quadratic inequality An inequality that involves
a quadratic function. To solve quadratic inequality
means to find all the values of the variable x that
substituted into the inequality result in a true state-
ment. Solutions of quadratic inequalities are given
either in the form of a finite interval (open or closed)
or in the form of the union of two semi-infinite in-
tervals. Examples: The inequality x2 − x − 6 > 0
has the solution set (−∞,−2)∪ (3,∞). The inequal-
ity 2x2 − 2x − 4 ≤ 0 has the solution set [−1, 2].
Some inequalities have no solution (have empty solu-
tion set), such as the inequality x2 + 1 < 0, because
the quadratic expression x2 + 1 is always positive.

quadratic surface A three dimensional surface
given by a quadratic polynomial which consists of a
quadratic form plus some linear and constant terms
such as

x2 − 2y2 + z2 + xy − xz + 3yz − x− 5y + 2z = 8.

See also ellipsoid, hyperboloid, paraboloid.

quadrilateral Also called quadrangle. A geomet-
ric figure that consists of four connected interval of a
straight line. Among the most common quadrilater-
als are the square, rectangle, parallelogram, rhombus,
trapezoid.
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qualitative data Also called categorical data.
Data that is organized by its qualitative (as opposed
to quantitative) properties. This kind of data may
give information in the non-numeric form, such as
eye color, agree-disagree opinions, month of the year,
etc. It also may contain numeric information put into
categories, such as year of birth, ZIP codes and oth-
ers, that have no particular significance of order.

qualitative variable A variable that takes quali-
tative values only.

quantitative data Numeric data with added con-
dition that the order of numbers has significant im-
portance. The numeric data of heights is quantitative
because people of different heights can be put in spe-
cific order (by increasing or decreasing heights). The
numeric data of birthdates is not necessarily quanti-
tative because we cannot organize people in order of
birthdates (the year of birth is also necessary to do
so).

quantitative variable A variable that takes quan-
titative (numeric) values only.

quartiles Suppose we have a set of numeric values
organized in increasing order. We first find the me-
dian of this set (see corresponding definition for the
procedure). On the second step we additionally find
the medians of the two halves. This way the set of val-
ues is divided into four equal (or almost equal) parts.
Each of them is called a quartile. The notations for
the three points dividing the set are Q1, Q2, Q3. Note
also that second point Q2 coincides with the median
and usually is denoted by M . Finding the quartiles
is important for constructing boxplots.

quartic equation Algebraic equation of the fourth
degree that could be written in the form

αy4 + βy3 + γy2 + δy + ε = 0, α 6= 0.

There is a formula for solving these types of equations
which is extremely complicated and difficult to use in
practice unlike the quadratic formula (see also cubic
equation). Here is a quick outline of the solution
process. First, we divide the equation by α 6= 0 and
get a monic equation

y4 + ay3 + by2 + cy + d = 0,

then by the substitution y = x − a/4 bring it to a
simpler form

x4 + px2 + qx+ r = 0, (1)

where the new coefficients p, q, r are found from the
old coefficients a, b, c, d. Now we add the expression
2zx2 + z2 to both sides of this equation and bringing
some terms to the right side, get

x4 + 2zx2 + z2 = (2z − p)x2 − qx+ (z2 − r),

where z is yet to be determined. The left side is the
perfect square (x2 + z)2 and the right side could be
made perfect square if we chose z to satisfy the condi-
tion 2

√
2z − p

√
z2 − r = −q. Squaring this relation

gives (2z−p)(z2−r) = q2/4 which is a cubic equation
with respect to the unknown z:

z3 − p

2
z2 − rz +

pr

2
− q2

8
= 0.

This equation could be solved by the method de-
scribed in the article cubic equations and the four
solutions of the equation (1) are given by the formu-
las

x1,2 =
1

2

√
2z − p±

√
−1

2
z − 1

4
p+

√
z2 − r,

x3,4 =
1

2

√
2z − p±

√
−1

2
z − 1

4
p−

√
z2 − r.

For equations where some more terms are missing the
solution formula becomes slightly easier. In practice,
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approximate methods are more appropriate and eas-
ier to use than the formulas above.

quasi frequency Some functions are not periodic
but have certain repeating pattern. Example: The
function f(x) = e−x sin 2x is not periodic but it os-
cillates with specific frequency. In this case it is two.
The number 2 is the quasi frequency of the function
f . The number 2π/2 = π in this case will be the
quasi period of the same function.

quotient of numbers The same as the ratio of two
numbers. The result of the division of two numbers.
5
7 is the quotient of numbers 5 and 7.

quotient rule For differentiation of the quotient
of two functions. If f and g are two differentiable
functions on some interval I, then[

f(x)

g(x)

]′
=
f ′(x)g(x)− g′(x)f(x)

[g(x)]2
.

See also differentiation rules.

R

radian measure One of the two main units used
to measure angles, especially useful for applications
in calculus. One radian, by definition, is the central
angle that is formed when a segment equal to the
radius of the circle is placed on the circumference of
the circle. If we place a segment of the length s on
the circumference, the radian measure of the corre-
sponding central angle will be equal θ = s/r, where
r is the length of the radius. Since the length of the
circle is 2πr, the radian measure of a whole circle will
be 2π. See also degree measure.

radicals Also called roots. The second meaning of
the term is just the sign n

√
a indicating the n-th root

of the number a. See the entry roots for all the de-
tails.

radical equation Equation that contains the un-
known variable under radical of any order. Examples
could be

√
2x+ 7 − x = 2 or 3

√
3x− 1 = 2. The

standard method of solving most of the radical equa-
tions is to isolate the radical expression and then raise
both sides of the equation to the power of the radi-
cal. When solving radical equations containing even
order radicals (such as square roots or forth degree
roots) this method may produce extraneous roots. To
avoid getting incorrect roots all the solutions should
be checked back into the original equation to assure
the validity of that solutions. For example, to solve
the equation in our first example, we move the vari-
able x to the right side to isolate the radical first:

√
2x+ 7 = x+ 2

and then squaring both sides get the algebraic equa-
tion 2x + 7 = x2 + 4x + 4. This quadratic equation
has two zeros x = 1, x = −3. After checking in the
original equation both of these solutions we see that
x = −3 is an extraneous solution and the only valid
solution of the equation is x = 1.
To solve the second example we just raise both sides
to the third power (cube both sides) and get a sim-
ple linear equation 3x− 1 = 8 with a single solution
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x = 3. Extraneous solutions do not arise in this case
or in any case where only odd order radicals are in-
volved, so x = 3 is a valid solution.
Solutions of some radical equations require repeated
use of the method described above. For example, to
solve the equation

√
2x− 5−

√
x− 3 = 1

we first move the second radical to the right and
square both sides to get

2x− 5 = x− 3 + 2
√
x− 3 + 1

which still contains a radical. Now we can isolate it,
x − 3 = 2

√
x− 3 and squaring the second time get

the quadratic equation x2 − 10x + 21 = 0 with two
solutions x = 3, x = 7. This time both solutions
turn to be valid.

radicand A number or an expression appearing
under the radical. In the expressions 5

√
7 and√

4x5 − 3x3 + x2 − 1, 7 and 4x5 − 3x3 + x2 − 1 are
the radicands respectively.

radiocarbon dating Or just carbon dating. A
method of determining the age of old objects us-
ing the properties of radioactive carbon C14 and the
knowledge of its half-life period.
Suppose we need to determined the age of some an-
cient artifact that has remaining amount of carbon-14
at the amount A. The original amount of the carbon
is always the same (in percentages) and is denoted by
A0. The age of the artifact can now be determined
by the formula

T = −8267 ln(A/A0).

radius of a circle By definition, a circle is the
geometric place (the locus) of all points that have
equal distance from a given fixed point. This distance
is the radius of the circle. In the general equation of
the circle

(x− a)2 + (y − b)2 = r2

the points (x, y) represent an arbitrary point of the
circle, the point (a, b) is the center, and r is the ra-
dius.

radius of convergence For a given power series

∞∑
n=0

cn(x− a)n

there are three possibilities for convergence:
(1) The series converges only for x = a;
(2) The series converges for all real x;
(3) There is finite number R > 0 such that the se-
ries converges for all |x− a| < R and diverges for all
|x− a| > R.
In the third case we say that the series has finite ra-
dius of convergence equal toR. The interval−R+a <
x < R + a is called the interval of convergence. At
the endpoints x − a = ±R of the interval of conver-
gence the series may or may not converge. In the
first and second cases we say that the radius of con-
vergence is zero or is infinite respectively. Examples:
(1) For the series

∑∞
n=0 n!xn, R = 0; (2) For the

series
∑∞
n=0

xn

n! , R =∞; (3) For the series

∞∑
n=0

(−1)nxn

n+ 1

R = 1. This series converges at the right endpoint of
the interval x = 1 and diverges at the left endpoint
of the interval x = −1.

random digit A number (usually whole number
between 0 and 9) that is chosen as a result of the
chance. Tables of random digits are sometimes used
in the process of randomization of statistical experi-
ments.

random number The same as random digit with
the difference that chosen numbers are not necessar-
ily digits.

random variable A variable that assumes its val-
ues randomly (by chance). One of the main objects
of Statistics.

range of a function The set of all values that the
given function y = f(x) can take. Examples: For the
function f(x) = 2x5 − 3x2 + 5x − 1 the range is the
set of all real numbers; for the function f(x) = 2x

the range is the set of all positive numbers.
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range of a transformation For a linear transfor-
mation T : V →W the set of all vectors w ∈W such
that there is at least one vector v ∈ V that Tv = w.
These values in the range are also called images of
the transformation T .

rank (1) For the linear transformation T : V →W
the rank is the dimension of the range of that trans-
formation.
(2) For a matrix A the row space and column space
have the same dimension. This dimension is called
the rank of the matrix.

rate of change The measure of change of some
variable quantity in a unit amount of time. Depend-
ing of the nature of change the rate might be a con-
stant or a variable amount itself. For objects moving
with constant speed the rate of change is just their
velocity. For objects that move at a variable speed
the average rate of change in a given time interval is
defined to be the difference of their positions divided
by the time elapsed: vav = (s2 − s1)/(t2 − t1). For
these type of moving objects the instantaneous rate
of change is the limit of the above expression as the
time interval approaches zero:

v = lim
t2→t1

s2 − s2
t2 − t1

.

This last limit is just the derivative of the position
function s = s(t).

rate of growth (decline) In differential equation
dy/dt = ry the constant r is sometimes called rate of
growth or decline depending on its sign (positive or
negative).

ratio The result of the division of two numbers or
expressions. Ratio of two numbers is more general
that a rational number, because we can divide any
two numbers, not just integers. Hence, 3/4 is the
ratio of the numbers 3 and 4 and also is a rational
number, but

√
3/4 is the ratio of the numbers

√
3

and 4 which is not rational (it is irrational). The
expression

2x2 − 3x+ 1

x3 − 4

is the ratio of two algebraic expressions (polynomi-
als).

rational equation An algebraic equation involv-
ing just rational functions. The general form of these
type of equations is P (x)/Q(x) = 0 where both P and
Q are polynomials. The standard method of solving
these kind of equations is to multiply both sides of
the equation by the denominator function Q(x) and
get a polynomial equation P (x) = 0. The only differ-
ence compared to polynomial equations is that after
finding the solutions of the equation P (x) = 0 we
need to make sure that there are no extraneous zeros
(roots). To do that we need to plug in into the orig-
inal equation all the solutions and see if all of them
really satisfy that equation. Examples:
1) Solve the equation

2

x
=

3

x− 2
− 1.

Multiplying by the common denominator x(x−2) we
get the quadratic equation 2(x− 2) = 3x− x(x− 2)
or, after simplification, x2 − 3x − 4 = 0 which has
two solutions x = 4, x = −1. Substituting into the
original equation we see that both are solutions of the
equation.
2) When we solve the equation

2 +
5

x− 4
=
x+ 1

x− 4

by the exact same method, we get a linear equation
with the solution x = 4. Now, if we put this solution
back into the original equation then it will become
undefined because both denominators become zero.
As a result we conclude that the equation has no so-
lution.

rational function A function that could be repre-
sented as a ratio of two polynomials. The domain of
a rational function is the set of all real numbers where
the denominator does not equal zero. The functions

2x3 − 3x2 + 1

x2 − 4
,

x− 1

x2 + 1

are rational. The first one has the domain {x|x 6=
±2} and for the second one the domain is the set of
all real numbers, because denominator x2+1 is never
equal to zero.
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rational number A real number that could be
represented as a ratio of two integers: r = n/m,
where m 6= 0. Rational numbers can be repre-
sented also as decimals. The decimal representation
of rational numbers is either a terminating decimal
or non-terminating, repeating decimal. Examples:
2
5 ,

137
−218 , −2.759, 17.247247247....

rational root test A method of finding roots (ze-
ros, solutions) of a polynomial equation of order 3 or
higher. This method does not give a guarantee that
these roots will be found, just allows to find them in
cases the equation has rational roots.

Let f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

be a polynomial of degree n ≥ 1 with rational co-
efficients.Then all the rational roots of the equation
f(x) = 0 (if they exist) have the form p/q, where p
is a factor of the constant term a0 and q is a factor
of the leading term an.

Examples: For the equation 2x3+3x2−8x+3 = 0 the
possible rational roots are ±1,±3,± 1

2 ,±
3
2 . Checking

these values we see that x = 1, 1/2,−3 are the roots of
the equation. For the equation x4−4 = 0 the rational
root test shows that the only possible rational roots
are ±1,±2,±4. The check of all these values shows
that none of them are roots of the equation. Instead,
the simple factoring x4 − 4 = (x2 + 2)(x2 − 2) = 0
shows that the equation has four roots x = ±

√
2 and

x = ±i
√

2. First two are irrational and the second
two are complex. The equation has no rational roots.

ratio test A method of determining the absolute
convergence or divergence of a (numeric or func-
tional) series.

(a) If limn→∞

∣∣∣an+1

an

∣∣∣ = a < 1, then the series∑∞
n=1 an is absolutely convergent.

(b) If limn→∞

∣∣∣an+1

an

∣∣∣ = a > 1, then the series is di-

vergent.
(c) In the case a = 1 the test cannot give a definite
answer.

rationalizing denominators In some algebraic
expressions the denominator contains radical expres-
sions. The process of getting rid of that irrationality
is called rationalizing the denominator.

Examples: (1) In the expression

2√
5x

we can multiply both numerator and denominator by√
5x and get (assuming x ≥ 0)

2√
5x

=
2
√

5x√
25x2

=
2
√

5x

5x

which has no radical in denominator.
(2)

3

√
3x

2y2z
= 3

√
4yz2 · 3x

8y3z3
=

3
√

12xyz2

2yz
.

(3) In situations when the denominator contains the
sum or difference of two square roots of the form

√
a+√

b or
√
a−
√
b, the standard method of rationalizing

is to multiply both numerator and denominator by
the conjugate of the denominator:

1√
7−
√

5
=

√
7 +
√

5

(
√

7−
√

5)(
√

7 +
√

5)

=

√
7 +
√

5

7− 5
=

√
7 +
√

5

2
.

ray Take a line and consider only the part that
starts at some (arbitrary) point and goes in one di-
rection. The result is a ray.

real axis The same as x-axis. The term is mainly
used when considering representation of complex
numbers as points on the plane. In that situation
the plane will be called complex plane and the y-axis
will be called imaginary axis.

real line The same as real axis or x-axis. The only
difference is that we speak of real line mainly in cases
when we want to represent real numbers as opposed
to representing complex numbers or ordered pairs.
Each real number corresponds to some point on the
real line and any point on the real line represents
some real number.

real number The set of all real numbers is the
union of all rational and irrational numbers. In turn,
these subsets have their own subsets. The subsets of
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rational numbers are prime, natural, whole, integer
numbers and the subsets of irrational numbers are
algebraic and trascedental numbers. Each real num-
ber could be represented as a point on the real line
and each point on the real line represents a real num-
ber. These last statements say, in particular, that
inside the real numbers there are no ”gaps”.

real part of a complex number In the complex
number z = x+ iy the number x, which is real. Ex-
ample: In the complex number −2 + 3i the real part
is −2. The number 3 here will be the imaginary part
of that complex number.

rearrangement of series Any change in order of
terms of a series is called rearrangement. Generally
speaking, for infinite series, rearrangement changes
the sum of the series. The following are two impor-
tant statements about rearrangements of the numeric
series

∑∞
n=0 an.

(1) If the series is absolutely convergent, then any re-
arrangement of the series leaves the sum unchanged.
(2) If the series is conditionally convergent and L is
any real number, then it is possible to rearrange the
series in such a way that its sum becomes equal to L.

reciprocal function Most commonly used to in-
dicate the function f(x) = 1/x.

reciprocal number Or reciprocal of a number.
For a given number a, a 6= 0 the reciprocal is the
number that is multiplied by a gives 1. Hence the
reciprocal of a will be 1

a . Examples: The reciprocal
of −2 is −1/2 and the reciprocal of 3/7 is 7/3.

reciprocal trigonometric identities The identi-
ties

csc θ =
1

sin θ
, sec θ =

1

cos θ
, cot θ =

1

tan θ

that immediately follow from the definitions of the
trigonometric functions.

rectangular coordinate system The same as
Cartesian coordinate system.

recurrence formulas, relations Different rela-
tions/formulas between the members (terms) of a se-
quence with the following common feature: To find

any term of the sequence (starting from a certain
point) it is necessary to know the previous term or
terms. Examples: The sequence {an} given by the
formula a0 = 2, an = 2 · an−1 for n ≥ 1 requires
the knowledge of only the previous term. In the Fib-
bonaci sequence a1 = a2 = 1, an = an−1 + an−2 for
n ≥ 3 we need to know the two previous terms to
determine the next one.

reduced row-echelon form Similar to row-
echelon form with additional fourth condition:
(4) Any column that contains a leading 1 has zeros
everywhere else.
The matrices 1 0 0

0 1 0
0 0 1

  1 0 0 −2
0 1 0 3
0 0 1 2

 .

are in reduced row-echelon form.

reduction formula Any formula that allows to re-
duce an expression to a simpler form. Many trigono-
metric formulas could be considered reduction formu-
las (double angle, half angle, etc). Also, many integral
formulas have the name reduction formula. Example
of an integral reduction formula is:∫

(lnx)ndx = x(lnx)n − n
∫

(lnx)n−1dx.

reduction of order A method of finding solutions
of differential equations (with constant or variable co-
efficients) when one of the solutions of that equation
is known. The method allows to use that solution
and reduce the equation to an equation of lower or-
der, which is easier to solve. Example: Suppose we
need to solve the equation y′′+p(t)y′+q(t)y = 0 and
we already know that y1(t) is a solution. To find the
second solution we seek it in the form y = v(t)y1(t) =
v(t)e−t, where v is a yet to be determined function.
Calculating the first and second derivatives of y and
substituting back into the equation (also remember-
ing that y1 satisfies that equation) we arrive to the
simple equation

y1v
′′ + (2y′1 + py1)v′ = 0,
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which is indeed an equation of the first order if we
denote v′ = u. Now, this equation is always solvable
by the method of multiplying factors.

reduction to systems of equations Any differ-
ential equation of order n > 1 could be reduced to a
system of n first order equations with same amount
of unknown functions. For example, the second or-
der equation y′′ − 5y′ + 2y = 0 could be written as a
system

x′1 = x2, x′2 = −2x1 + 5x2

if we make simple substitutions x1 = y, x2 = y′.

reference angle For a given angle θ,−∞ < θ <∞
in standard position, the reference angle (usually de-
noted by θ′) is the acute angle formed by the terminal
side of the given angle and the horizontal axis. Hence,
if the terminal side is in the first quadrant, then the
reference angle is equal to the given angle (possibly
subtracted or added some multiple of 360◦ to make it
acute). Using degree measure, here are the formulas
to calculate the reference angles in cases when the
given angle is between 0◦ and 360◦.
1) If 0 < θ < 90◦, then θ′ = θ;
2) If 90◦ < θ < 180◦, then θ′ = 180◦ − θ;
3) If 180◦ < θ < 270◦, then θ′ = θ − 180◦;
4) If 270◦ < θ < 360◦, then θ′ = 360◦ − θ.

reflection of a function A function (and its
graph) could be reflected with respect to any line
of the plane. For a given function f(x) the function
g(x) = f(−x) is its reflection with respect to the y-
axis, and the function h(x) = −f(x) is its reflection
with respect to the x-axis. The reflection of the graph
of the function f(x) with respect to the line y = x
represents the graph of the inverse function f−1(x),
if the inverse exists.

reflection transformation Or reflection opera-
tor, is a transformation that maps each vector into
its symmetric image about some line or plane. Ex-
ample: The operator T : R2 → R2 that transforms
any vector to its symmetric with respect to the y-axis
is given by the standard matrix

A =

(
−1 0
0 1

)
.

region A collection of points, a set, usually in two-
or three-dimensional Euclidean space. Regions are
the sets where functions of two or more variables are
defined. There are different types of regions depend-
ing on certain properties.
(1) An open region (also set) is the one that with
every of its points contains also a disk (circle) com-
pletely inside the region. Example of an open set is
the unit circle x1+y2 < 1 without the circumference.
(2) A closed region is the one that contains all of its
boundary points. For a plane region, for example,
the point (x, y) is a boundary point if any circle with
center at that point contains points that belong to
the region and points that do not belong to it. An
example of the closed region is the ”closed” unit circle
x2 + y2 ≤ 1.
(3)Connected region is the one where any two points
of that region could be connected by a curve entirely
belonging to the region.
(4)Simply connected region is the one where every
simple, connected curve encloses only points that are
in the region. Roughly speaking, simply connected
regions do not have any ”holes” or more than one
”piece”.

regression line See least squares regression line.

regular polygon A polygon that has equal sides
(and also equal inner angles). Examples are the
square, regular pentagon, hexagon, octagon, etc.

regular singular point For series solutions of lin-
ear differential equations of the type

P (x)y′′ +Q(x)y′ +R(x)y = 0.

If for some point x0, P (x0) = 0 but the limits

lim
x→x0

(x− x0)
Q(x)

P (x)
, lim
x→x0

(x− x0)2
R(x)

P (x)

are both finite, then the point x0 is a regular singular
point and for the equation the series solution is still
possible. See the main entry series solution.

regular transition matrix A transition matrix is
regular if some integer power of it has all positive en-
tries.

related rates If two or more variable quantities
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are related to each other then their changes are also
related. If there is a formula to connect the rate of
change of one variable to the rate of change of the
other(s), then these rates are called related. Exam-
ple: The volume of a ball (sphere) is related to the
radius by the formula V = 4πr3/3. When the ra-
dius starts increasing at the rate dr/dt, the volume
also starts increasing and the relation is dV/dt =
4πr2dr/dt.

relative error If in some calculation an error is
made then the difference between the exact value and
the approximate value is the absolute error. The ra-
tio of the absolute error and the the exact value is
the relative error.

relative growth rate The growth rate is the mea-
sure of the change of a variable quantity in a unit
time, or its instantaneous change. If we divide that
rate by the quantity itself, the result will be the rel-
ative growth rate. For example, if P denotes the size
of some population, then dP/dt is its growth rate and
1
P dP/dt is the relative growth rate.

relative maximum and minimum The same as
local maximum and minimum.

remainder (1) If an integer (dividend) is divided
by another (divisor) and the result is not an integer,
then whatever is left over is the remainder. For ex-
ample, when we divide 127 by 5, the result is 25 and
the remainder is 2. In cases when division is possible
without remainder, we say that the remainder is zero.
(2) If a polynomial is divided by another polynomial,
the result is some third polynomial and whatever is
left over is the remainder of the division. In the divi-
sion

2x3 − 3x2 + x− 4

x2 + 3
= (2x− 3) +

7x− 13

x2 + 3

the polynomial 7x− 13 is the remainder. The degree
of the remainder is always lower than the degree of
the divisor.

remainder theorem If a polynomial f(x) is di-
vided by a binomial x − k, then the remainder is
r = f(k).
As a result, it follows, that if the polynomial is divis-
ible by the binomial, then the remainder is zero.

remainder of a series Let Σan be a numeric or
functional series. Then the sum of the first n terms
sn = Σnk=1ak is its nth partial sum and the infinite
sum of the terms starting from n + 1 is its remain-
der Rn = Σ∞n+1ak. In case the series is convergent,
Rn = s− sn.

remainder estimates for series For most of the
numeric or functional series it is either very difficult
or even impossible to find the exact value that’s why
we try to find their approximate values. The best way
to do it is to take some partial sums of that series.
In that case the part we ”cut” from the series (the
infinitely many terms from the point we stop) is the
remainder of that series. To estimate the accuracy
of the approximation it is essential to have good esti-
mates for these remainders. Below are two examples
of estimates of remainders:
(1) Suppose f(k) = ak, where f is a continuous, pos-
itive, and decreasing function for x ≥ n and suppose
that

∑
an is convergent. If Rn is the remainder of

that series, then∫ ∞
n+1

f(x)dx ≤ Rn ≤
∫ ∞
n

f(x)dx.

(2) Let s =
∑

(−1)n−1bn and sn is its partial sum.
Assume also that 0 ≤ bn+1 ≤ bn and limn→∞ bn = 0.
Then |Rn| = |s− sn| ≤ bn.
For the estimates for remainders of power series see
Taylor series.

removable discontinuity For functions that are
not continuous (have discontinuity) at some point
x = c, it is sometimes possible to redefine them at
that point so they become continuous. This kind
of discontinuity is called removable. Examples: The
function f(x) = (x2 − 1)/(x − 1) is not defined at
the point x = 1 (because the denominator is equal to
zero there). Now, we can redefine this function as

f(x) =

{
x2−1
x−1 if x 6= 1

2 if x = 1

and this function will be continuous everywhere. In
the case of the function f(x) = 1/x, on the other
hand, it is impossible to redefine the function so it
becomes continuous at the point x = 0, hence the



124

discontinuity at that point is not removable.

representation of functions Functions could be
represented in many different ways, the most com-
mon being the verbal, graphical, as a list or table,
and algebraic or analytic. For specific examples see
the entry functions.

representation of vector Any vector in a vector
space V could be represented as a linear combination
of vectors of any basis of the space V . See corre-
sponding entries for more details.

residual The least squares regression line gives the
predicted values of the variable in the given interval
that are not necessarily equal to the observed values
of the variable. The difference between the predicted
value and the observed (actual) value of the variable
is the residual.

resonance Many natural systems (mechanical,
electromagnetic, acoustic, etc.) have their specific
vibration frequencies. If an outside force, acting
periodically, is applied to the system, and its own
frequency is close or identical to the system’s fre-
quency, then the phenomenon of resonance occurs.
In that case the amplitude of vibration of the sys-
tem increases significantly even with very small out-
side force. Mathematically this could be expressed
by equation of the form

my′′ + γy′ + ku = F0 cosωt,

where the right side represents the outside periodic
force.

response variable In Statistics, another name for
dependent or y-variable. See also explanatory vari-
able.

revenue function A function (in business and eco-
nomics) that represents the revenue from production
(or sales) of x units. If p(x) is the price (or demand)
function, then the revenue function is given by the
formula R(x) = xp(x).

reversing order of integration When evaluating
double integrals (and, more generally, multiple inte-
grals) it is important to be able to reverse the order of
integration. This means that one can integrate first

by one variable and then by the second one or do in-
tegration in reverse order (with appropriate change
of limits of integration). Exact conditions when this
is possible are given by Fubini’s theorem. Example:∫ 1

0

∫ 1

x

sin(y2)dydx =

∫ 1

0

∫ y

0

sin(y2)dxdy

=

∫ 1

0

y sin(y2)dy =
1

2
(1− cos1).

rhombus The special case of parallelogram, when
all four sides are equal.

Riemann integral Let f(x) be a continuous func-
tion on the closed finite interval [a, b]. Let us di-
vide the interval into n equal parts of size ∆x =
(b − a)/n. Denote the endpoints of these parts
by x0(= a), x1, x2, · · · , xn(= b) and chose arbitrary
points x∗1, x

∗
2, · · · , x∗n in each of these smaller intervals

[xi−1, xi], 1 ≤ i ≤ n. Then the Riemann integral of
f on the interval [a, b] is the limit∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗i )∆x.

Equivalently, the integral can be defined with the
sample points x∗i chosen to be the left endpoints, right
endpoints or the midpoints of intervals.
The sum in the definition of the integral is called a
Riemann sum. See also definite integral.

right angle An angle that measures 90◦ in degree
measure or π/2 in radian measure.

right triangle Any triangle that has one right an-
gle. The other two angles in such a triangle are nec-
essarily acute.

right circular cylinder A cylinder that has a cir-
cle as its base and the sides are perpendicular to the
base.

right-hand derivative If a function is not differ-
entiable at some point x = c, then the limit in the
definition of derivative does not exists, i.e.

lim
h→0

f(c+ h)− f(c)

h
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does not exist. In some cases, however, one sided
limit might exist. If the right-hand limit

lim
h→0+

f(c+ h)− f(c)

h

exists, then it is called right-hand derivative of f at
the point x = c. See also left-hand derivative.

right-hand limit Let f(x) be a function defined
on some interval [a, b] (also could be an open inter-
val). Right-hand limit of f at some point c is the
limit of f(x) as the point x approaches c from the
right, or, which is the same, as x > c. The notation
is limx→c+ f(x). The precise definition of right-hand
limit (the ε − δ definition) is the following: The
function f has right-hand limit at the point c and
that limit is L, if for any real number ε > 0 there
exists δ > 0 such that |f(x) − L| < ε as soon as
|x− c| < δ, x > c. See also limit and left-hand limit.

Roll’s theorem This theorem states that if a
differentiable function has the same values at the
endpoints of some closed interval, then somewhere
inside that interval the tangent line to this function
should be horizontal. Formally:
Let f be continuous on some interval [a, b] and dif-
ferentiable inside the interval (a, b). If, additionally,
f(a) = f(b), then there is a number c, a < c < b,
such that f ′(c) = 0.

root (1) Has the same meaning as the radical. Let
n ≥ 2 be an integer and a and b– some real numbers
such that b = an. Then we write a = n

√
b and call

a the n-th root of b. Not all real numbers have real
n-th roots. For example, the number −3 has no real
square root because the square of any real number is
positive (or zero). If a real number has a real root,
then the one that has the same sign as the number
is called the principal n-th root. To guarantee the
existence of the roots, the following definitions are
given:
(a) If n is even and a ≥ 0, then the n-th root of a is
the positive number b such that bn = a. For the case
of negative number a see roots of a complex number ;
(b) If n is even and a is any real number, then the
n-th root of a is the real number b such that bn = a.
The following properties are valid for all radicals

that make sense under the definition above:

1) n
√
am = ( n

√
a)m, 2) n

√
a · n
√
b =

n
√
ab,

3)
n
√
a

n
√
b

= n

√
a

b
, 4)

m

√
n
√
a = nm

√
a,

5)( n
√
a)n = a,

6) n
√
an = |a| for n even; n

√
an = a for n odd.

The roots are used also to define fractional exponents,
because an/m = m

√
an and they obey the same rules

(properties) as the n-th roots.
(2) When solving algebraic equations, the term ”root
of the equation” is used as a synonym of the terms
”solution of the equation” or ”zero of the equation”.
See zeros of the equation.

root function The function f(x) = n
√
x, where n

is a positive integer. If n is even, then the domain
of this function is [0,∞) and for odd n the domain
is the set of all real numbers. The graphs show the
functions

√
x and 3

√
x respectively.

roots of a complex number Any complex num-
ber z has exacly n roots of order n (denoted by
wk, k = 0, 1, 2, · · · , n− 1). To find the nth root of a
complex number z = a + ib, we write it in trigono-
metric form z = r(cos θ+ i sin θ) and use the formula

wk = n
√
r

[
cos

θ + 2πk

n
+ i sin

θ + 2πk

n

]
,
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where n
√
r means the positive nth root of the positive

number r.
Example: To find the four fourth roots of the number
z = −2 + 2

√
3i we write z = 4(cos 120◦ + i sin 120◦)

and wk, k = 0, 1, 2, 3 are given by

4
√

4

[
cos

120◦ + 360◦k

4
+ i sin

120◦ + 360◦k

4

]
,

from where we find w0 =
√
6
2 + i

√
2
2 , w1 = −

√
2
2 +

i
√
6
2 , w2 = −

√
6
2 − i

√
2
2 , w3 =

√
2
2 − i

√
6
2 .

roots of unity The nth roots of the number 1 con-
sidered as a complex number. We can write the num-
ber 1 in the trigonometric form as 1 = cos 0 + i sin 0
and apply the formula for the roots of a complex num-
ber and get

wk = cos
2πk

n
+ i sin

2πk

n
, k = 0, 1, · · · , n− 1.

The first root of unity is always 1(w0 = 1). Geomet-
rically, the roots of unity are points located on the
unit circle at the equal distance from each other.

root test A method of determining the absolute
convergence or divergence of a (numeric or func-
tional) series.
(a) If limn→∞

n
√
|an| = a < 1, then the series∑∞

n=1 an is absolutely convergent.

(b) If limn→∞
n
√
|an| = a > 1, then the series is di-

vergent.
(c) In the case a = 1 the test cannot give a definite
answer.

root law for limits If n is a positive integer, then

lim
x→a

n
√
f(x) = n

√
lim
x→c

f(x).

In case when n is even, we need additionally assume
that limx→c f(x) > 0. In the special case f(x) = x
we have limx→c

n
√
x = n

√
a.

rotation operator Also called rotation transfor-
mation. The operator in the Euclidean space that
rotates each vector of that space with respect to some
fixed point or some fixed axis by some specific angle.
The rotation operator in the plane corresponding to

rotations about the origin to the angle θ is given by
the matrix (

cos θ − sin θ
sin θ cos θ

)
.

There are more rotation operators in three dimen-
sional Euclidean space, corresponding to rotation
about the origin or about some axis. for example,
the counterclockwise rotation about the positive x-
axis through an angle θ is given by the matrix 1 0 0

0 cos θ − sin θ
0 sin θ cos θ

 .

Similar matrices work for rotations about y-axis or
z-axis.

round-off error Also called rounding error. The
difference between the actual (exact) value and the
numeric approximation value. Round-off errors are
inevitable when representing irrational (and some
rational) numbers because their numeric value con-
tains infinitely many digits (too many digits, respec-
tively). Example: The exact decimal value of the
number

√
2 contains infinitely many digits (and, as

a result, will never be known). Depending on situ-
ation we may use the numeric approximations 1.41,
1.4142, 1.414213562, etc. The round-off errors for
these values are approximately 0.0042, 0.00001356,
0.000000000373.

row-echelon form A matrix is in the row-echelon
form if the following conditions are satisfied:
(1) If a row does not consist of zeros only, then the
first non-zero element is 1 (leading 1);
(2) Rows consisting of zeros only are grouped at the
bottom;
(3) In two non-zero rows, leading 1 in the bottom row
is to the right of the leading 1 of the row above.
The matrices 1 −2 0

0 1 0
0 0 1

  1 3 0 −2
0 0 1 3
0 0 0 0

 .

are in the row-echelon form.

row equivalence If a matrix A can be obtained
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from another matrix B by a finite sequence of
elementary row operations, then matrix B can be
obtained from matrix A by the same number of
elementary row operation. Because every elementary
row operation is invertible, the second sequence of
matrices is just the inverses of the first sequence (in
reverse order). These kind of matrices are called row
equivalent.

row reduction The process of applying the
Gauss or Gauss-Jordan elimination procedure to a
given matrix. This process is useful, in particular, in
evaluating the determinants of matrices.

row space For an m × n matrix A the vectors
formed by the m rows of that matrix are called row
vectors and the subspace of the Euclidean space Rn

spanned by that vectors is the row space of the
matrix. The row spaces of row equivalent matrices
are the same.

ruled surface A surface that could be generated
by the motion of a straight line. Examples of ruled
surfaces are cylinders, cones, hyperbolic paraboloids.

S

saddle point Suppose the point (a, b) is a critical
point for a function f(x, y). If it is neither a maxi-
mum nor minimum value for the function, then the
corresponding point on the graph of f (a point on the
surface determined by the function) is called a saddle
point.

sample A part of the population gathered with the
intention of getting information about the popula-
tion. The process of gathering samples is called sam-
pling. In order to present statistical (and scientific)
value all samples should be random. See the entry
simple random sample. In addition to simple ran-
dom sample we have the following special methods of
sampling:
1) Probability samples give each element of the pop-
ulation equal chance to be chosen;
2) In stratified random sample we first divide pop-
ulation into groups of similar objects (stratas) and
then used the simple random sample in each of these
groups. The results should be put together;
3) In systematic samples we chose every nth element
of the population.
There are some other methods of sampling all of
which assure the un-biased character of the sample.

sample mean The mean (average) of all sample
values. If x1, x2, · · · , xn are the sample values then
the mean is

x =
x1 + x2 + · · ·+ xn

n
=

∑n
i=1 xi
n

.

sample space When considering a random phe-
nomena, the collection of all possible outcomes is the
sample space. For example, when rolling a dye, the
sample space is the collection of the outcomes 1, 2,
3, 4 ,5, and 6.

sample standard deviation The square root of
the sample variance: s =

√
s2. See also standard de-

viation.

sample variance If x1, x2, · · · , xn are all the val-
ues of the sample and x is the sample mean, then the
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variance is given by the formula

s2 =

∑n
i=1(xi − x)2

n− 1
.

There is another formula, called shorthand formula,
that is sometimes more convenient to use:

s2 =
n
∑n
i=1 x

2
i − (

∑n
i=1 xi)

2

n(n− 1)
.

See also variance.

sampling distribution Suppose we have a distri-
bution from large population. Chose a simple random
sample of size n from that population. After that we
find the mean of that sample and denote it by x̄1.
Then we do the same process the second time and
denote the mean of the second sample of size n by
x̄2. If we repeat this process many times we will get
a sequence, or set of the values {x̄1, x̄2, x̄3, · · ·}. The
distribution formed from these values is the sampling
distribution. According to the Central limit theorem,
the sampling distribution is always normal (more pre-
cisely, approaches to normal, if n increases). The
same theorem also establishes relationship between
the means and standard deviations of these distribu-
tions.

sawtooth wave The function defined as f(t) =
t, 0 ≤ t < 1 and then repeated periodically with
the period 1: f(t+ 1) = f(t).

scalar The same as a constant. A quantity that
does not change. Real and complex numbers are
scalars.

scalar equation of a plane The same as equation
of the plane and in three dimensional space is given
by

ax+ by + cz + d = 0.

scalar field Or the field of scalars. In choosing the
scalars (constants) to use in different situations, we
usually choose among the fields of rational numbers,
real numbers or complex numbers. When we need a
real vector space, then the choice is the field of real
numbers. Also we consider polynomials using coeffi-
cients from the field of rational numbers.

scalar product Has the same meaning as the in-
ner product. Let x,y be two vectors. Then
(1) 〈x,y〉 = 〈y,x〉; (2) For any real a, 〈ax, y〉 =
a〈x, y〉; (3) 〈x,x〉 ≥ 0 and 〈x,x〉 = 0 if and only
if x = 0.

scalar multiplication The operation of multiply-
ing vectors or matrices by a scalar. In the case of ma-
trices, to multiply by a scalar means to multiply each
entry of the matrix by the same constant. Hence,

2 ·

 1 0 −2
−1 3 4
5 −2 0

 =

 2 0 −4
−2 6 8
10 −4 0

 .

In the case when vectors are given in the column or
row form, then scalar multiplication works exactly
as in the case of matrices. If the vectors are given in
an abstract vector space, then scalar multiplication
is defined in the form of axioms (part of the axioms
of a vector space):
(1) If k is a scalar and u is in the space V , then ku
also is in V ;
(2) k(u + v) = ku + kv;
(3) (k + l)u = ku + lu;
(4) k(lu) = (kl)u.

scatterplot Also called scatter diagram or scat-
ter graph. If the statistical data comes in pairs
(paired data), then they could be viewed as ordered
pairs and presented on the Cartesean plane as
a number of points. The result is called scatter-
plot. The figure shows the scatterplot of paired
data {(2, 24), (3, 37), (5, 45), (8, 31), (9, 78), (11, 61),
(12, 82)}.

scientific notation Notation used to write very
large or very small numbers in a more compact form.
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In this form the number is written as a number be-
tween 1 and 10 multiplied by some power of 10. Ex-
amples: (1) The number 4250000000 can be written
as 4.25 × 109. (2) The number 0.0000716 could be
written as 7.16× 10−5.

secant function One of the six trigonometric func-
tions. Geometrically, the secant of an angle in a right
triangle, is the ratio of the hypothenuse of the trian-
gle to the adjacent side. Also could be defined as the
reciprocal of the cosine function. The function secx
could be extended to all real values exactly as the
cosx function. The domain of secx is all real values,
except x = π/2 +πn, n any integer, and the range is
(−∞,−1] ∪ [1,∞). secx is 2π-periodic.
One of the Pythagorean identities relates the secant
function to the tangent function: 1 + tan2 θ = sec2 θ.
The following are the calculus related formulas:

d

dx
(secx) = secx tanx,

∫
secxdx = ln | secx+ tanx|+ C.

secant line A line that connects two points on
some curve. The segment of the secant line between
these two points is the chord.

second derivative test A test that allows to find
local maximums or minimums and substitutes the
first derivative test in cases when the second deriva-
tive at the critical points exists.

Assume f ′′(x) is continuous near the point c.
(a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local
minimum at the point c;
(b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local
maximum at the point c.

sector of a circle A part of a circle that is bounded
by two radiuses and the arc of the circumference con-
necting the endpoints of radiuses.

semi-circle One half of a circle. Also could be
viewed as a sector formed by two radiuses making
180◦ angle.

separable differential equations In the most
general setting, the equation is separable if it could
be written in the form

M(x) +N(y)
dy

dx
= 0.

Another way of describing separable equations is to
write them in the form

dy

dx
=
f(x)

g(y)
.

To solve this equation we write g(y)dy = f(x)dx and
integrate to find the general solution∫

g(y)dy =

∫
f(x)dx.

Example: Solve the equation dy/dx = x3/y2. Solu-
tion: y2dy = x3dx,∫

y2dy =

∫
x3dx,

y3/3 = x4/4 + C, and y = 3
√

3x4/4 + 3C =
3
√

3x4/4 +K.

sequence A sequence is a list of numbers, func-
tions, vectors, etc. written in some order. Terms (or
members) of a sequence are numbered using the set
of natural or whole numbers or all integers.
(1) Numeric sequences. A sequence could be viewed
as a function of natural (whole, integer) variable.
Hence, we write f(1) = a1, f(2) = a2, · · ·. A sequence
is finite if it has only finite number of terms. Other-
wise it is called infinite. A sequence {an} is bounded,
if there is a number M > 0 such that |an| ≤ M for
all n. {an} is called increasing if any next term is
greater than the previous one: an+1 > an. Similarly,
it is called decreasing if an+1 < an. The general name
for increasing and decreasing sequences is monotonic.
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Limits for sequences are defined like limits for func-
tions. A sequence {an} is said to have a limit L as
n → ∞ if for any ε > 0 there is a N > 0 such
that |an − L| < ε as soon as n > N . We write
limn→∞ an = L. A sequence that has a limit as
n → ∞ is called convergent. Otherwise it is diver-
gent. In case when the sequence is divergent in a
specific way that it increases without bound, we say
that it goes to infinity. Formally, limn→∞ an = ∞
means that for any M > 0 there is an integer N such
that an > M as n > N . The case limn→∞ an = −∞
is defined similarly.
(2) Sequences of functions could be treated sim-
ilar to numeric sequence. Again, we have the
notions of bounded , increasing or decreasing se-
quences. The most common functional sequences are
sequences of monomials {xn} and trigonometric func-
tions {sinnx, cosnx}.

series The sum of the terms of a finite or infinite,
numeric or functional sequence. Accordingly, we have
numeric or functional series.To write the series we use
the summation (sigma) notation.
1) Numeric series. The series

∑∞
n=0 an is called con-

vergent, if the sequence of its partial sums Sn =∑n
k=0 ak is a convergent sequence. The precise defini-

tion is: We say that the series
∑∞
n=0 an is convergent

and converges to some finite number S, if for any
given ε > 0 there exists a natural number N such
that |Sn − S| < ε as soon as n ≥ N . In order to
find out if a series is convergent or not, various con-
vergence tests may be used. For positive series see
integral test, comparison test, lomit comparison test.
For alternating series see the alternating series test.
Finally, for absolute convergence of the series see the
ratio test or the root test.
2) Functional series. If the terms of the series con-
sists of functions, then it is called functional series.
A functional series may be convergent for some val-
ues of the variable and divergent for other values.
The definition of convergence of a functional series at
any point is exactly the same as the definition of the
convergence of a numeric series. The most common
functional series are power series and trigonometric
series. Besides them, other functional series are also
considered (such as Bessel series or series of Laguerre

polynomials). See also binomial series, Taylor series,
MacLaurin series.

series solution For linear differential equations.
Assume that we are solving the equation

y(n) + a1(x)y(n−1) + · · ·+ an(x)y = 0,

where the coefficients a1(x), a2(x), · · · , am(x) are an-
alytic functions, hence can be represented by their
Taylor-MacLaurin series. The idea behand the series
solutions of this equation is that it is natural to look
for analytic solutions, i.e. solutions, represented by
power series. This idea extends also to some cases
when the coefficients are not analytic but have some
”regularity” properties. The method works the best
when the coefficients ai(x) are polynomials, or even
better, if they are monomials. We will demonstrate
this method for the case of second order equation

P (x)y′′ +Q(x)y′ +R(x)y = 0. (1)

A point x = x0 is called ordinary point for this equa-
tion, if P (x0) 6= 0, otherwise it is called a singular
point.
(A) The case of the ordinary point. Dividing the
equation by P (x), we will have a simpler form near
the ordinary point x0 (because P (x0) 6= 0)

y′′ + p(x)y′ + q(x)y = 0 (2)

and will look for a solution

y(x) =

∞∑
n=0

an(x− x0)n,

where the coefficients an are still to be determined.
If we calculate the first and second derivatives of this
unknown function and also write power series rep-
resentations of functions p(x) and q(x) around the
point x0, then we will get

∞∑
n=2

n(n− 1)an(x− x0)n−2

+

 ∞∑
j=0

pj(x− x0)j

( ∞∑
n=1

nan(x− x0)n−1

)
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+

( ∞∑
i=0

qi(x− x0)i

)( ∞∑
n=0

an(x− x0)n

)
= 0.

Finally, if we perform all multiplications and addi-
tions, equate resulting coefficients of all powers to
zero (because on the right side we have the identi-
cally zero function), then we will find expressions for
coefficients an we the help of the known coefficients
pj , qi of the functions p(x) and q(x).
Example: Find the series solution of Airy’s equation

y′′ − xy = 0, −∞ < x <∞.

Proceeding as described before and using the fact
that the functions p(x) = 0 and q(x) = x are very
simple, we will have series solution presentation cen-
tered at x = 0 (here the summation index is changed
to a more convenient form):

2a2 +

∞∑
n=1

(n+ 2)(n+ 1)an+2x
n =

∞∑
n=1

an−1x
n.

Now, clearly a2 = 0, because the right side does not
have a constant term and from the recurrence relation

(n+ 2)(n+ 1)an+2 = an−1

that follows from equating the coefficients of equal
powers, we have also a5 = a8 = · · · = 0, or a3n−1 =
0, n = 1, 2, 3, · · ·. Similarly, we find that

a3n =
a0

2 · 3 · 5 · 6 · · · (3n− 1)(3n)

and
a3n+1 =

a1
3 · 4 · 6 · 7 · · · (3n)(3n+ 1)

and the solution of the equation (2)is given by the
formula

y = a0

[
1 +

x3

2 · 3
+

x6

2 · 3 · 5 · 6
+ · · ·

]

+a1

[
x+

x4

3 · 4
+

x7

3 · 4 · 6 · 7
+ · · ·

]
.

This solution depends on constants a0 and a1. If we
need to find a unique solution then it is necessary to
have two initial or boundary values given.

(B) The case of the singular point. If the function
P (x) from the equation (1) above becomes zero at
any point, then the described method does not work.
There is however an exceptional case where a similar
method gives a satisfactory solution. If P (x0) = 0
and

lim
x→x0

(x− x0)
Q(x)

P (x)
, lim
x→x0

(x− x0)2
R(x)

P (x)

are both finite, then the point x0 is called regular
singular point. Now assuming for simplicity that the
point x = 0 is a regular singular point for the equa-
tion (1) we divide that equation by P (x) and then
multiplying everything by x2 get the simplified equa-
tion

x2y′′ + x[xp(x)]y′ + [x2q(x)]y = 0. (3)

Here we are seeking solutions in the form

y = xr
∞∑
n=0

anx
n,

where both the coefficients an and the index r are
to be determined. Proceeding as in the case of or-
dinary points and equating the coefficients of equal
powers we will have a recurrence relationship for the
coefficients and the index:

F (r + n)an +

n−1∑
k=0

ak[(r + k)pn−k + qn−k] = 0,

where F (r) = r(r − 1) + p0 + q0.

Theorem. (a) Let r1 ≥ r2 be the two real roots of
the indicial equation F (r) = 0. Then there exists a
solution of the form

y1 = |x|r1
[

1 +

∞∑
n=1

an(r1)xn

]
,

where an(r1) are found from recurrence relation
above.
(b) If r1 − r2 is not zero or a positive integer, then
there exists a second linearly independent solution of
the form

y2 = |x|r2
[

1 +

∞∑
n=1

an(r2)xn

]
.
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(c) If r1 = r2, then the second solution is given by

y2 = y1(x) ln |x|+ |x|r1
∞∑
n=1

bn(r1)xn.

(d) If r1 − r2 = N is a positive integer, then

y2 = ay1(x) ln |x|+ |x|r2
[

1 +

∞∑
n=1

cn(r2)xn

]
.

The coefficients an(r1), bn(r1), cn(r2) and the con-
stant a can be determined by substituting the solu-
tions into the equation (3). The constant may equal
zero and the corresponding term will be missing.

sets One of the most basic notions of mathematics.
By a set we understand any collection of objects of
any nature: numbers, people, countries, stars, etc.
Objects of a set are called its elements or members.
Two sets A and B are considered equal (more pre-
cisely, identical) if they have exactly the same ele-
ments. A set B belongs to another set A (is a subset
of A, notation: B ⊂ A), if all elements of B are
also elements of A, but the opposite is not necessar-
ily true. For a set A, its complement A is the set of
all elements that do not belong to A. For example, in
the larger set of all real numbers, the complement of
all rational numbers is the set of all irrational num-
bers. For the operations of intersection and union of
sets see corresponding entries.

shift of index of summation In summation no-
tation for functions it is sometimes important or con-
venient to ”shift” the index of summation to be able
to combine two or more sums. For example, the sum

n∑
k=1

ak−1x
k

could be written also as
∑n−1
k=0 akx

k+1 using the sub-
stitution m = k − 1 and then returning to the index
k because the notation does not make the sum any
different.

shifted conics The three major conic sections (el-
lipses, parabolas, hyperbolas) may be shifted horizon-
tally or vertically or both. The result is a shifted

conic. See the equations in the corresponding en-
tries.

shift of a function The process of moving the
graph of a function horizontally or vertically or both.
Algebraically the vertical shift is achieved by adding
or subtracting a number from the function: g(x) =
f(x) + c is the vertical shift if the functionf . If c > 0
then the function is shifted up and if c < 0 then the
shift is down. The horizontal shift of the function f
is given by the formula g(x) = f(x− c). If c > 0 then
the function shifts to the right and if c < 0 it shifts
to the left. For example, the graph of the function
g(x) = (x+ 3)2 + 2 could be found from the graph of
the parabola f(x) = x2 by shifting it left 3 units and
shifting up 2 units.

sieve of Erathosthenes The ancient method of
finding prime numbers. Suppose we need to find all
the prime numbers up to some number N . Make the
list (table) of all these numbers and start eliminat-
ing the numbers that are not prime as follows: First
throw away the number 1 because it is not prime.
Next, leave 2 because it is prime but throw away all
multiples of 2 (all even numbers) up to N . In the
third step leave 3 but eliminate all the multiples of
3 that are still in the list (all even numbers that are
multiples of 3 were eliminated in the previous step).
Continuing this way we will throw away all non-prime
numbers and what is left would be all prime numbers
up to N . During this process our number list gets lots
of ”holes” which is the reason for the name ”sieve”.

sigma notation The same as summation notation.

signed elementary product An elementary prod-
uct multiplied by +1 or -1. Used to calculate deter-
minants.

signed number A term that is sometimes used to
indicate negative number, as numbers preceded by
the ”minus” sign.

significance level Also called alpha level and de-
noted by the Greek letter α. For tests of significance,
a numeric level such that any event with probability
below that is considered rare. It is set arbitrarily but
the usual choices are 0.1, 0.05 and 0.001. The choice
of the significance level depends on the importance
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of the problem.

significance tests See test of significance.

similar terms The same as like terms.

similar matrices Square matrices A and B are
similar if there exists an invertible matrix P such
that B = P−1AP . similar matrices have many prop-
erties and characteristics in common. In particular,
the determinants, traces, eigenvalues, nullity of simi-
lar matrices are the same. If the two matrices are the
standard matrices of some transformations T1 and T2
then the transformation bringing one to the other is
called similarity transformation

simple curve A curve is simple if it does not in-
tersect itself, except maybe the endpoints. If the
curve is given by the parametric equations x =
f(t), y = g(t), a ≤ t ≤ b, then being simple means
(f(c), g(c)) 6= (f(d), g(d)) for c, d 6= a and c, d 6= b.
If the endpoints coincide, i.e., if f(a) = f(b) and
g(a) = g(b), then we call it a simple closed curve.

simple region A term sometimes used to describe
regions that lie between the graphs of two functions.
Similarly, simple solid region is a region that lies be-
tween two surfaces described by functions of two vari-
ables.

simple eigenvalues See eigenvalue of matrix.

simple harmonic motion If a particle or an ob-
ject moves (oscillates) according to the equation y =
A cos(ωt− δ) then this kind of motion is simple har-
monic. Here A is the amplitude, ω/2π is the fre-
quency and δ is the phase shift.

simple interest If the bank pays interest on the
principal amount only then the interest is called sim-
ple. Mathematically, if P is the amount of the money
invested at the rate r yearly, then after n years that
principle will become P +nrP = P (1 +nr). See also
compound interest.

simple random sample One of the most impor-
tant notions in statistics. A simple random sample
of size 2 from a given population P is a sample where
every possible pair of values has equal chance to be
chosen. A simple random sample of size 3 is a sam-

ple from the population where every possible triple of
values from P has equal chance to be chosen. More
generally, a simple random sample of size n is a sam-
ple where every possible set of n values from P has
exactly the same chance to be chosen.

simply connected region If any simple closed
curve in the region contains only points from the re-
gion, then it is called simply connected. Another,
simpler definition says, that if any two points in the
region can be connected by a continuous curve that
is completely inside the region, then it is simply con-
nected. In other words, the region basically consists
of one ”piece”.

Simpson’s rule One of the methods of approxi-
mate integration. To calculate the approximate value

of the integral
∫ b
a
f(x)dx using Simpson’s rule we di-

vide the interval [a, b] into even number n equal in-
tervals of the length ∆x = (b− a)/n with the points
x0 = a, x1 = a+ ∆x, x2 = a+ 2∆x, · · · , xn = b. Then
we have the approximation

∫ b

a

f(x)dx ≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2)

+4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn)].

For the degree of accuracy of this approximation see
error estimate for Simpson’s rule.

sine function One of the six trigonometric
functions. Geometrically, the sine of an angle in
a right triangle is the ratio of the opposite side
to the hypotenuse of the triangle. More general
approach allows to define sinx function for any real
x: Let P = (a, b) be any point on the plane other
than the origin and θ is the angle formed by the
positive half of the x-axis and the terminal side,
connecting the origin and P . Then sin θ = b√

a2+b2
.

Next, after establishing one-to-one correspondence
between angles and real numbers, we can have the
sine function defined for all real numbers. The range
of sinx is [−1, 1] and it is 2π-periodic.
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The sine function is related to other trigonometric
functions by various identities. The most important
is the Pythagorean identity sin2 x + cos2 x = 1. The
derivative and indefinite integral of this function are:

d

dx
(sinx) = cosx,

∫
sinxdx = − cosx+ C.

sine integral function The function defined by
the integral

Si(x) =

∫ x

0

sin t

t
dt.

The integrand cannot be expressed with elementary
function and the values of this function are found by
approximate (numeric) integration.

singular matrix The opposite of an invertible ma-
trix. For a square matrix A to be singular means
there is no matrix B such that A · B = I, where I
is the identity matrix. An easy criteria for the singu-
larity is that the determinant of a singular matrix is
zero.

singular point A point where the function cannot
be defined because it has infinite limit (from the left,
from the right, or both). The point x = 1 is singular
for the function f(x) = 1/(x− 1)2 because

lim
x→1

1

(x− 1)2
=∞.

A function has singular point at infinity if
limx→∞ f(x) = ±∞. For the use of the term singular
in differential equations see irregular singular point,
regular singular point.

size of a matrix Size of a matrix is the number of
rows and columns it has. So, if the matrix has 4 rows

and 5 columns then we say that it is of size 4× 5.

skew lines Two lines in three dimensional space
are called skew lines if they are not parallel and do
not intersect. Skew lines do not lie in any plane.

skew-symmetric matrix A square matrix is
skew-symmetric if it is equal to the opposite of its
transpose: A = −AT .

slant asymptote An asymptote that is neither
horizontal nor vertical. For exact definition see the
entry asymptote.

slope One of the most important characteristics of
a line on a plane. Shows the level of ”steepness”
or ”flatness” of the line. If the points (x1, y1) and
(x2, y2) are on the line, then, by definition, the slope
of the line is the number m = (y2−y1)/(x2−x1). For
a horizontal line the slope is zero and for a vertical
line the slope is not defined because the denominator
in the definition becomes zero.

slope field Same as direction field.

slope-intercept equation of a line If the slope
m and the y-intercept b of the line are known, then
the equation of the line is given by the formula

y = mx+ b.

Example: If the slope of the line is m = 2 and the
y-intercept is the point (0,−1), then the equation of
the line is y = 2x− 1. See also line.

smooth curve A curve created by a smooth func-
tion or smooth functions.

smooth function Usually, a function that has con-
tinuous derivative. In some other settings smooth
function might mean a function that has more than
one derivative. In particular, infinitely differentiable
functions are also called smooth. The notion of the
smooth function extends also to functions of several
variables.

smooth surface A surface given by a differentiable
function f(x, y) of two variables. Geometrically this
means that the surface has no ”corners” or ”edges”.

solid Usually, a three dimensional object, geomet-
ric figure. For example, solid angle means the figure
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that we receive when we connect a fixed point with all
the points of a closed simple curve in space. Solid of
revolution means a solid that is received by rotating
a plane region about some line, such as coordinate
axis.

solution Depending on the type of equation the
solution would be a number, set of numbers, set of
ordered pairs or ordered triples, a matrix, a vector,
a function or set of functions, etc. All these solu-
tions have the same common property: substitution
into the equation (or system of equations) results in
a true statement, an identity. For details of how to
find solutions of equations see the articles quadratic
equation, cubic equation, quartic equation, rational
equations, radical equations, systems of linear equa-
tions, linear ordinary differential equation and many
others where the solutions of the corresponding equa-
tions are presented.

solution curve The graph of the solution of a dif-
ferential equation.

solution set The set of all solutions of the given
equation.

solution space Let Ax = b be a system of linear
equations. Each solution x of this equation is called
solution vector. The set of solutions forms a linear
space called solution space.

solving triangles To solve a triangle means to find
one or more elements (side or angle) of the triangle
knowing the other elements. To solve a triangle we
need to know at least three elements (including at
least one side), because otherwise the problem be-
comes impossible to solve. The follwing four cases
are possible in solving triangles: (1) One side and two
angles are known (AAS or ASA); (2) Two sides and
one angle not formed by them is known (SSA); (3)
Two sides and the angle formed by them are known
(SAS), and (4) Three sides are known (SSS). The
first two cases are handled by the Law of sines and
the other two cases are solved by the Law of cosines.
Also, the second case is called ambiguous, because it
not always results in definite solution. For that case
see the separate entry ambiguous case. In the fol-
lowing examples the angles are denoted by A,B,C

and the sides are denoted by a, b, c and we follow the
convention that side a is opposite to angle A, side b
is opposite to angle B and side c is opposite to angle
C.
(1) The case AAS. Let C = 102.3◦, B = 28.7◦, b =
27.4. First we find the angle A using the fact that
the sum of all angles is 180◦: A = 49.0◦. Then using
the Law of sines we have a = b sinA/ sinB ≈ 43.06.
Similarly, c = b sinC/ sinB ≈ 55.75 and the triangle
is solved.
(2) The case SAS. Let A = 115◦, b = 15, c = 10.
First, we use Law of cosines to find the side a :
a2 = b2 + c2 − 2bc cosA ≈ 451.79 and a ≈ 21.26.
After this, we have the choice of using either the
Law of cosine again or the Law os sines to find
one of the missing angles. Law of sines will give
sinB = (b/a) sinA ≈ 0.63945 and B ≈ 39.75◦. Now,
C ≈ 25.25◦ and the triangle is solved.
(3) The case SSS. Let a = 8, b = 19, c = 14. Using
the Law of cosines we have, for example,

cosB =
a2 + b2 − c2

2ac
≈ −0.45089

from where B ≈ 116.80◦. Now, the rest follows as in
the previous case and we can find the remaining al-
gles as before: A ≈ 22.08◦, C ≈ 41.12◦. The solution
is complete.

space In mathematics the term has different mean-
ings depending on context. Most commonly space
means the three dimensional space we live in which
is mathematically the three dimensional Euclidean
space. In other cases space refers to vector space.
See corresponding entries for more details.

space curve A curve in three dimensional space
could be given by different methods. Suppose t is
a variable on some interval [a, b] and the functions
f, g, h are defined and continuous on that interval.
Then the set of all points (x, y, z) in space where

x = f(t), y = g(t), z = h(t)

is a space curve given parametrically by these equa-
tions.
The same curve could be also given as a vector with
the equation

r(t) = f(t)i + g(t)j + h(t)k,
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where i, j,k are the standard bases in the three di-
mensional space.
Space curve is called continuous, differentiable, etc.
if the functions f, g, h have the same properties.

sphere One of the most common geometric figures.
The term has two meanings, to indicate the geometric
solid or its boundary. In the first case the term ball is
more commonly used. The equation of the ball (solid
sphere) of radius r centered at the points (a, b, c) is
(x−a)2 +(y−b)2 +(z−c)2 ≤ r2. The equation of its
boundary (the sphere) is (x−a)2+(y−b)2+(z−c)2 =
r2.

spherical coordinates One of the most common
coordinate systems in three dimensional space along
with the Cartesian and cylindrical systems. It is the
three dimensional analog of the polar coordinate sys-
tem on the plane. The points in spherical coordinate
system are determined by three parameters: the dis-
tance from the origin (usually denoted by ρ) and two
angles. The first angle, denoted by θ is measured on
the xy-plane from the positive x-axis and the second
angle, denoted by φ, is measured from the positive
z-axis. This way ρ ≥ 0, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.

The relations between the spherical and rectangular
coordinates are given by the formulas

x = ρ cos θ sinφ, y = ρ sin θ sinφ, z = ρ cosφ.

spiral of Archimedes See Archimedian spiral.

spread of a distribution The meaning of this
term depends on situation but as a rule the spread
of any distribution is described by its standard devi-
ation or variance.

square matrix A matrix such that the number of
rows is equal to the number of columns. There are
many matrix operations that are possible for square
matrices but not for other type of matrices. For ex-
ample, the notions of determinant and inverse of a
matrix do not make sense if the matrix is not square.
For other entries specifically applied to square ma-
trices see nilponent matrix, normal matrix, skew-
symmetric, symmetric, unitary matrices.

square root The radical of the second order. The
square root of a non-negative number a ≥ 0 is de-
fined to be the non-negative number b ≥ 0 such that
b2 = a. The notation for the square root of the num-
ber a is

√
a. If the number a is negative then its

square root is not a real number, it is imaginary. See
also the entry root for more details.

squeeze theorem Assume that three functions
f(x), g(x), h(x) satisfy the inequalities f(x) ≤ g(x) ≤
h(x) near some point x = c but not necessarily at that
point. Assume also that

lim
x→c

f(x) = lim
x→c

h(x) = L

then
lim
x→c

g(x) = L.

Example: Evaluate the limit

lim
x→0

x cos(1/x).

Because the function cos(1/x) has no limit at zero,
the usual product law for limits does not apply. How-
ever, since | cos(1/x)| ≤ 1,

−x ≤ x cos(1/x) ≤ x.

Now, limx→0 x = limx→0(−x) = 0 and by the
squeeze theorem our limit is also zero.

standard basis vectors In many common vector
spaces sets of vectors that form a basis are considered
to be standard. For example, in the Euclidean space
Rn the set of vectors e1 = (1, 0, 0 · · · , 0), e2 =
(0, 1, 0, · · · , 0), · · · , en = (0, 0, 0, · · · , 1) is considered
(and called) the standard basis. In the space Pn
of all polynomials of degree n or less the set of
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functions (1, x, x2, · · · , xn) is the standard basis.

standard deviation For a set of values
x1, x2, x3, · · · , xn with the mean µ, the standard
deviation is defined by the formula

σ =

√∑n
i=1(xi − µ)2

n− 1
.

The square of this expression is called variance.
There are other, sometimes easier formulas for calcu-
lating standard deviation. See sample standard devi-
ation.

standard equations A term used in different situ-
ations with specific meanings. For example, the stan-
dard equation of a line is ax+by = c, or the standard
equation of an ellipse centered at the point (h, k) is

(x− h)2

a2
+

(y − k)2

b2
= 1.

standard error In Statistics the standard devia-
tion of the sampling distribution is usually unknown.
To estimate it we use values of the sample and call
it sampling error because it almost never equals the
actual standard deviation. The standard error for
the sample mean x̄ is given by the formula SE(x̄) =
s/
√
n, where s is the sample standard deviation and

n is the size of the sample. The standard error for
proportions is

SE(p̂) =

√
p̂(1− p̂)

n
,

where p̂ is the sample proportion and n is the sample
size.

standard matrix Suppose T is a linear transfor-
mation from the Euclidean space Rn to Rm. Then
the vectors x = (x1, x2, · · · , xn) are transferred to
vectors y = (y1, y2, · · · , ym) by linear equations

a11x1 + a12x2 + · · ·+ a1nxn = y1

a21x1 + a22x2 + · · ·+ a2nxn = y2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

am1x1 + am2x2 + · · ·+ amnxn = ym

The matrix A = [aij ], 1 ≤ i ≤ m, 1 ≤ j ≤ n
formed by the coefficients of these equations is called
the standard matrix of the transformation T . The
notion of the standard matrix could be extended also
to transformations in general linear vector spaces.

standard normal distribution The special
case of the normal distribution, when the mean is
equal to 0 and the standard deviation is equal to
1. If the random variable describing some normal
distribution with the mean µ and standard deviation
σ is x then the variable z = (x − µ)/σ describes the
corresponding standard normal distribution. The
graph of the standard normal distribution is also the
normal density curve centered at 0.

standard position Usually refers to angles or
vectors. In the case of angles, the standard position
is when the vertex is located at the origin and the
initial side coincides with the positive side of the
x-axis. In the case of the vectors the standard
position is when the initial point coincides with the
origin. See also angles, vectors.

standardized value The same as the z-score.

statistical inference Also called inferential
statistics. The use of statistical information (data)
to draw conclusions about larger population.

statistics One of the main branches of Mathemat-
ics. It is concerned with collecting and interpreting
data. By other definitions, it is a mathematical
science pertaining to the collection, analysis, inter-
pretation or explanation, and presentation of data.
Some other definitions of this science also include
the fact that Statistics most of the time deals with
random phenomena and needs to draw conclusions
from randomly received data. See different entries
about Statistics throughout this Dictionary.

stemplot Also called stem-and-leaf plot. An easy
and fast way of establishing the form of the distri-
bution for relatively small data set. For example,
to organize the set of values {44 46 47 49 63 64 66
68 68 72 72 75 76 81 84 88 106}, we separate the
”tens” digits and combine all the ”ones” digits that
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correspond to each particular tens digit. The result is

step function The function f(x) = [[x]] defined as
the greatest integer less than or equal to x. Differ-
ent variations of this function also may be called step
function or staircase function.

Stokes’ theorem One of the most important the-
orems of the multivariable Calculus. It could be
viewed as the generalization of the Fundamental The-
orem of Calculus and also of the Green’s theorem.
This theorem relates surface integrals of some func-
tions with integrals on the boundary curve of that
surface.
Stokes’ theorem. Let S be an oriented piecewise-
smooth surface bounded by a simple, closed,
piecewise-smooth boundary curve C with positive
orientation. Let F a vector field with continuously
differentiable components in a region G ⊂ R3 that
contains S. Then∫

C

F · dr =

∫ ∫
S

curlF · dS.

For definitions of vector field and curl of a vector field
see corresponding entries. See also divergence theo-
rem for related results.

stretching a function One of the possible trans-
formations of functions. The vertical stretch of the
function f is given by the formula g(x) = cf(x),
where |c| > 1. In case when |c| < 1 the term squeez-
ing or compression is used. The horizontal stretching
is given by the formula g(x) = f(cx) where |c| < 1.
In case |c| > 1 the transformation is squeezing or
compression.

straight angle An angle that is 180◦ in degree mea-
sure or π in radian measure.

straight line Or simply a line. One of the most

important geometric figures (notions). A line is not
defined but assumed to be understood as other fun-
damental geometric or mathematical notions. In al-
gebra, a line is given by its equation. See the entry
line for all the details.

submatrix Any part of a given matrix could be
considered as a matrix, called submatrix.

subset A set B is called the subset of the set A
(written B ⊂ A), if any element of B is also an ele-
ment of A. Example: The set {2, 4, 5} is the subset
of the set {1, 2, 3, 4, 5}.

subspace A subset W of a vector space V is called
a subspace if W itself is a vector space under the same
rules of addition and scalar multiplication as for the
space V .

substitution method or substitution rule. One of
the main methods of evaluating indefinite or definite
integrals. The essence of the method is to find some
kind of substitution that will make the function un-
der the integral sign simpler and easier to evaluate
the integral. This method works only in cases when
the function could be presented or viewed as a prod-
uct of a composite function and the derivative of the
function that is the argument of that function. For-
mally:
Let u = g(x) be differentiable, then∫

f(g(x))g′(x)dx =

∫
f(u)du.

Examples: (1)
∫ √

3x− 1dx. The substitution u =
3x−1 results in du = 3dx and the integral transforms
to ∫ √

u
du

3
=

1

3

∫
u1/2du

=
2

9
u3/2 + C =

2

9
(3x− 1)3/2 + C.

(2)
∫

sin4 x cosxdx. Here the substitution u =
sinx, du = cosxdx gives∫

sin4 x cosxdx =

∫
u4du

= u5/5 + C = sin5 x/5 + C.
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The version of the substitution method for definite
integrals is:∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du.

subtended angle An angle is subtended by an arc
(usually, of a circle) if the two rays forming the angle
pass through the endpoints of the arc.

subtraction One of the four main arithmetic and
algebraic operations. By subtracting two numbers
we find their difference. Example: −2 − (−5) = 3.
See also addition and subtraction of complex num-
bers, fractions, functions, vectors, matrices.

subtraction formulas for trigonometric func-
tions See addition and subtraction formulas for
trigonometric functions.

sum The result of addition of two or more num-
bers, functions, matrices, etc. Example: The sum of
the functions f(x) = 2x2+3x−1 and g(x) = x2+5 is
the function (f+g)(x) = 3x2+3x+4. For the sum of
infinitely many numbers or functions see series and
power series.

summation notation A shorthand notation for
summation of many numbers or functions. Uses the
Greek letter sigma Σ. The notation

10∑
n=1

n2

means that we are adding the squares of all numbers
from 1 to 10. The variable n is called summation in-
dex or variable. In case the index takes all natural
numbers, the notation is

∑∞
n=1 an.

sum rule See differentiation rules.

sum-to-product formulas In trigonometry, the
formulas

sinu+ sin v = 2 sin

(
u+ v

2

)
cos

(
u− v

2

)
,

sinu− sin v = 2 cos

(
u+ v

2

)
sin

(
u− v

2

)
,

cosu+ cos v = 2 cos

(
u+ v

2

)
cos

(
u− v

2

)
,

cosu− cos v = −2 sin

(
u+ v

2

)
sin

(
u− v

2

)
.

Similar formulas are also possible for other functions
but hardly ever used.

supplementary angles Two angles that add up
to 180◦ (or π in radian measure). Two supplemen-
tary angles form one straight angle.

surfaces In the simplest cases a surface is a two
dimensional object in three dimensional space that
could be given by some equation z = f(x, y). De-
pending on properties of the function f we get dif-
ferent type of surfaces. For example, if f(x, y) has
continuous partial derivatives by both variables then
the surface would be called smooth. If the function is
a second degree polynomial with respect to its vari-
ables then the surface would be called quadric. The
meaning of the term closed surface should be under-
standable by itself. For explanations of terms ori-
ented surface, paramatric surface see the correspond-
ing entries.
For functions of three variables the equation
f(x, y, z) = k for some constant k is called the level
surface.

surface area Suppose some surface S is given by
the equation z = f(x, y) and the function has con-
tinuous partial derivatives fx, fy in some domain D.
Then the area of the surface S could be calculated by
the formula

A(S) =

∫ ∫
D

√
f2x(x, y) + f2y (x, y) + 1 dA,

where dA = dxdy is the element of the area of D.
This formula is the three dimensional generalization
of the arc-length formula and has similar format.

surface integral Suppose a surface S in three di-
mensional space is given by the function z = g(x, y)
over the domain D in xy-plane. The integral of the
function f(x, y, z) over that surface (under certain
regularity conditions for that surface) is defined to
be ∫ ∫

S

f(x, y, z)dS =
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D

f(x, y, g(x, y))
√
g2x + g2y + 1dA.

Here dA = dxdy is the element of the plane measure
and dS is the element of the measure on the surface
S and gx, gy are the partial derivatives of the func-
tion g(x, y). In particular case when f(x, y, z) = 1
we will get the surface area of S (see above). Similar
formulas are valid for surfaces given by parametric
equations and for integrals of vector functions with
appropriate changes. For calculations of surface in-
tegrals of vector functions with the help of volume
(triple) integrals see divergence theorem.

surface of revolution A surface received by ro-
tation of some curve about an axis, such as coor-
dinate axis. Many common surfaces (hyperboloids,
paraboloids, etc.) could be viewed as surfaces of rev-
olution.

symmetric function The term may mean differ-
ent things depending on situation. The most com-
monly symmetry with respect to one of the coordi-
nate axis or the origin is considered. Functions sym-
metric with respect to the y-axis are the even func-
tions and functions symmetric with respect to the
origin are the odd functions.

symmetric matrices A matrix A is symmetric if
it is equal to its transpose: A = AT . A symmetric
matrix is necessarily a square matrix. Example: 1 −1 2

−1 −2 0
2 0 3


synthetic division A simplified algorithm of di-
vision of any polynomial by a binomial of the form
x − c. This method allows to avoid writing (and re-
peating) the variable x in the process of division. In
order to be able to use this algorithm it is neces-
sary to write the polynomial we are dividing in the
form of decreasing powers and it is also mandatory to
”fill-in” the missing powers. For example, the poly-
nomial P (x) = 2x3 + 3x2 − 4 should be written as
P (x) = 2x3 + 3x2 + 0x − 4. Now, suppose we want
to divide this polynomial by x + 1. The synthetic
division procedure looks as below

The bottom row means that the result of the division
is the polynomial 2x2 + x − 1 and the remainder is
−3:

2x3 + 3x2 − 4

x+ 1
= 2x2 + x− 1− 3

x+ 1
.

systems of linear algebraic equations The gen-
eral system of m linear equations with n unknowns
is

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

am1x1 + am2x2 + · · ·+ amnxn = bm

where aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n and bk, 1 ≤ k ≤ n
are numeric constants and x1, x2, · · · , xn are the un-
knowns. For different methods of solving these kind
of equations see Cramer’s rule, Gaussian elimination,
Gauss-Jordan elimination, matrix method.

systems of linear differential equations (homo-
geneous) This type of systems are written usually
in the following form

x′1 = a11x1 + a12x2 + · · ·+ a1nxn

x′2 = a21x1 + a22x2 + · · ·+ a2nxn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

xn = am1x1 + am2x2 + · · ·+ amnxn

where x1, x2, · · · , xn are the unknown functions. Us-
ing vector and matrix notations, this system could
be written more compactly as x′ = Ax. The solution
of this system depends essentially on the eigenvalues
and eigenvectors of the matrix A.
(1) The matrix A has n distinct real eigenvalues
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r1, r2, · · · , rn with corresponding (distinct) eigenvec-
tors (ξ1, ξ2, · · · , ξn). Then the general solution vector
of the system x′ = Ax is given by

x(t) = c1ξ1e
r1t + c1ξ2e

r2t + · · ·+ c1ξne
rnt.

Example: To solve the system

x′ =

(
1 1
4 1

)
x

we find the eigenvalues r1 = 3, r2 = −1 and the
corresponding eigenvectors

ξ(1) =

(
1
2

)
, ξ(2) =

(
1
−2

)
and the two (linearly independent solutions would be

x(1)(t) =

(
1
2

)
e3t, x(2) =

(
1
−2

)
e−t.

(2) If the (real) matrix A has a complex eigenvalue
then it should have also its complex conjugate eigen-
value: r1 = λ + iµ, r2 = λ − iµ. The corresponding
eigenvectors are also conjugate in the sense that if
ξ(1) = a + ib then ξ(2) = a − ib. Now, the vector
solutions corresponding to these complex eigenvalues
could be written in the following form:

u(t) = eλt(a cosµt− b sinµt),

v(t) = eλt(a cosµt+ b sinµt).

Example: The system of equations

x′ =

(
−1/2 1
−1 −1/2

)
x

has eigenvalues r1 = −1/2 + i, r2 = −1/2 − i. The
two linearly independent vector solutions are

u(t) = e−
t
2

(
cos t
− sin t

)
, v(t) = e−

t
2

(
sin t
cos t

)
.

(3) If any of the eigenvalues of the matrix A is re-
peated then the situation is more complicated. Ex-
ample: For the system

x′ =

(
1 −1
1 3

)
x

r = 2 is a repeated eigenvalue and

x(1)(t) =

(
1
−1

)
e2t

is its corresponding vector solution. The second lin-
early independent vector solution is given by the for-
mula

x(2)(t) =

(
1
−1

)
te2t +

(
0
−1

)
e2t.

systems of linear differential equations (non-
homogeneous) These systems in matrix form
could be written as

x′ = ax + g(t),

where g(t) is a vector function. The general so-
lution of this system can be found by adding the
general solution of the homogeneous system to any
particular solution of the non-homogeneous system.
Among many methods for finding particular solutions
are the methods of undetermined coefficients, varia-
tion of parameters, Laplace transform method and
the method of diagonalization. The first three meth-
ods (although for equations, not for systems) are de-
scribed in separate articles. Here we will describe the
diaginalizathion method.
If the matrix A is diagonalizable, then there is an in-
vertible matrix T whose columns are the eigenvectors
of A that diagonalizes A. Denoting x = Ty we will
get an equation in new variable

Ty′ = ATy + g(t).

After applying the inverse of T from the left of this
equation we arrive to new equation

y′ = Dy + T−1g(t),

where D = T−1AT is a diagonal matrix. The last
system is in fact a system of n equations where each
of them contains only one variable and has the form

y′k(t) = rkyk(t) + hk(t), 1 ≤ k ≤ n.

Here rk are in fact the eigenvalues if the matrix A.
Each of these equations is a simple first order equa-
tion and can be solved by the method of integrating
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factors, for example. After solving it we just need
to multiply the solutions by the matrix T to find the
vector x and that will be a particular solution of the
non-homogeneous system.

systems of non-linear algebraic equations
There is no theory for solutions of non-linear alge-
braic systems but in many cases the substitution or
elimination methods (but not Gaussian elimination)
work here too. Example: Solve the system of equa-
tions

3x− y = 1

x2 − y = 5

Solving the first equation for y and substituting into
the second equation results in quadratic equation
x2 − 3x − 4 = 0. This equation has the solutions
x = 4,−1. Substituting these values into either of
the original equations gives y = 11,−4. Finally, the
system has two solutions (4, 11), (−1,−4).

T

t-distribution Suppose the random variable x rep-
resents some distribution (normal or not) with mean
µ and standard deviation σ and denote by x̄ the
means of samples of size n from that distribution.
A new distribution formed by the values

t =
x̄− µ
s/
√
n
,

where s is the sample standard deviation, is called
t-distribution. This distribution is generally speak-
ing not normal even if the original distribution of
the x values is normal because of the presence of
the standard error SE(x̄) = s/

√
n in denominator.

The t-distribution is different for different values of
sample size n and it is approaching standard normal
distribution as the sample size increases. The val-
ues (probabilities) corresponding to t-distribution are
found from special tables, by graphing calculators, or
computers. It is generally acceptable to approximate
t-distributions by the standard normal distribution if
n ≥ 30. The value t in the formula above is called
one-sample t-statistic.

tangent function One of the six trigonometric
functions. Geometrically, the tangent of an angle in
a right triangle, is the ratio of the opposite side of
the triangle to the adjacent side. Also could be de-
fined as the reciprocal of the cotangent function. The
function tanx could be extended as a function of all
real numbers with exception of x = π/2 + πn, n any
integer, and the range is all of R. tanx function is
π-periodic.
Tangent function is related to other trigonomet-
ric functions by various identities. The most
important of these are the identities tanx =
sinx/ cosx, tanx = 1/ cotx and a version of the
Pythagorean identity 1+tan2 x = sec2 x. The deriva-
tive and integral of this function are given by the
formulas

d

dx
tanx = sec2x,

∫
tanxdx = ln | secx|+ C.
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tangential component Any vector coming out
from some point of a curve, can be presented as
a combination of tangent and normal vectors. The
component in the direction of the tangent vector is
the tangential component.

tangent line A line is tangent to some curve at a
point of that curve, if the line and curve coincide at
that point and have no other common points in some
neighborhood of that point. If the curve is given by
a differentiable function f(x), then the tangent line
to this curve at the point (a, f(a) has the slope

f ′(a) = lim
x→a

f(x)− f(a)

x− a
and could be given by the equation y − f(a) =
f ′(a)(x − a). If the function is not differentiable at
some point then the corresponding curve does not
have a tangent line at that point.

tangent line method The same as the Euler
method for approximate solutions of differential
equations.

tangent plane A plane in three dimensional space
is tangent to some surface at some point of that
surface if they coincide at that point but have no
other common points in some neighborhood of that
point. If the surface is given by a differentiable func-
tion z = f(x, y), then the tangent plane at the point
(x0, y0, z0) is given by the equation

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

tangent vector A vector (usually unit vector) in
the direction of the tangent to a curve at some point.
Tangent vector is orthogonal to the normal vector at
the same point. If a space curve is given by the para-
metric vector function r(t), then its derivative r′(t0),

if it exists and is not zero, is the tangent vector at
the point r(t0).

tautochrone This is a curve down which a parti-
cle slides freely under just the force of gravity and
reaches the bottom of the curve in the same amount
of time no matter where its starting point on the
curve was. It turns out that the only curve satisfying
this condition is the cycloid.

Taylor series Let the function f(x) be defined on
some interval around the point x = a and has deriva-
tives of arbitrary order at that point. Then the power
series

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a)

+
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·

is called the Taylor series of f . The Taylor series of
a function may or may not converge to represent the
function itself. The functions such that their Taylor
series converges to them are called analytic.
A finite part of the Taylor series with summation
from n = 0 to n = N is called the Taylor polynomial
of order N . The Nth Taylor polynomial is usually
denoted by TN (x). If we denote the remaining part
of the Taylor series (the sum from n = N + 1) by
RN (x), then the question of when the Taylor series
converges to the function is resolved by the following

Theorem. If f(x) = TN (x) +RN (x) and

lim
N→∞

RN (x) = 0

for |x−a| < R, then f is equal to the sum if its Taylor
series on |x− a| < R.

A criteria showing when the remainder of the Taylor
series converges to zero is given by the following Tay-
lor’s inequality:

If |f (N+1)(x)| ≤M for |x−a| ≤ r, then the remainder
of the Taylor series satisfies

|RN (x) ≤ M

(N + 1)!
|x− a|N+1, |x− a| ≤ d.

The special case of Taylor series when a = 0 is called
MacLaurin series. See corresponding entry for exam-
ples of Taylor-MacLaurin series.
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Taylor’s inequality See Taylor series.

term of a sequence In a sequence a1, a2, a3, · · ·
each member (element, entry) is called term. Sim-
ilarly, in the series

∑∞
n=1 an each an is a term of

the series. The same term(word) is used to describe
the elements of any polynomial, which also are called
monomials.

terminal side Of two sides forming an angle in
standard position, one is called the initial side and
the other is the terminal. See the entry angle for all
the details.

term-by-term differentiation and integration
If a power series

∑
cn(x − a)n has radius of conver-

gence R > 0 then the function

f(x) =

∞∑
n=0

cn(x− a)n

is differentiable on the interval (a−R, a+R) and

f ′(x) =

∞∑
n=1

ncn(x− a)n−1,

∫
f(x)dx = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1
.

The differentiated and integrated series have the
same radius of convergence as the original series.

tests of convergence of series Different tests to
establish convergence or divergence of numeric or
power series. Each of them have separate entries.
See alternating series convergence test, comparison
test, integral test, limit comparison test, ratio test,
root test.

test of significance Statistical test, establishing
the significance of the sample results. As a rule, this
means that some test statistic should be compared
to some pre-determined small value (called α-value).
The finding considered significant if the test statistic
(usually P-value) is smaller than this α-value.

tetrahedron A geometric object composed of four
triangular faces, three of which meet at each vertex.
A regular tetrahedron is one in which the four trian-
gles are regular, or equilateral.

time plot A type of graph, mostly used in Statis-
tics, where the points are found from observations
taken during some time period and then connected
by segments of straight line.

torus A geometric three dimensional surface that
is the result of rotation of a circle around an axis not
crossing or touching that circle.

total differential For a function z = f(x, y) of two
variables, the expression

dz =
∂z

∂x
dx+

∂z

∂y
dy.

Total differential for functions of three or more vari-
ables is defined in the similar way.

trace of a matrix For a square matrix A the trace
is the sum of all elements on the main diagonal. For
the matrix  2 −2 0

5 −1 −4
3 0 4


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the trace is 2 + (−1) + 4 = 5.

transcendental function Any function that is
not algebraic. Transcendental functions include, but
are not limited to, exponential, logarithmic, trigono-
metric, hyperbolic, and inverse trigonometric and hy-
perbolic functions. Besides, most of the functions de-
fined with the use of power series or integrals are also
transcendental.

transcendental number A number that is not a
solution of an algebraic equation with rational coeffi-
cients. Examples are the numbers e and π.

transformation See linear transformation.

transformations of a function The combined
name for operations on functions including horizon-
tal shift, vertical shift, reflection, stretching, shrink-
ing (or compressing). The most general transforma-
tion of a given function f(x) would be the function
g(x) = af(bx− c) + d. Here the constant b indicates
the horizontal stretching (if |b| < 1) or shrinking (if
|b| > 1). The number c/b indicates the horizontal
shift, d is the vertical shift and the constant a is the
vertical stretching (if |a| > 1) or shrinking (if |a| < 1).
Also, multiplication by the constant a may result in
reflection with respect to the x-axis if it is negative.
Similarly, if b < 0 then the graph of the function
f would be reflected with respect to the y-axis. A
typical example of a function with all of the above
transformations is the function

y = −2 sin(3x+ π/4)− 1.

The term translations of functions is also sometimes
used.

transition matrix Suppose V is a vector space
and B = {u1,u2, · · · ,un} and B′ = {u′1,u′2, · · · ,u′n}
are two bases in that space. Let for some vector
v ∈ V [v]B and [v]B′ denote the coordinate matri-
ces of that vector with respect to the bases B and B′

respectively. Then there exists a n×n matrix P such
that [v]B = P [v]B′ . The matrix P is the transition
matrix from the basis B to the basis B′ and could be
written in the form

P = [[u′1]B |[u′2]B | · · · |[u′n]B ] .

transpose of a matrix The transpose of a matrix
A is a matrix such that the rows are the columns of
A and the columns are the rows of A. Hence, if A is
a m×n matrix, then its transpose is a n×m matrix.
The most common notation for the transpose is AT .
Example: For the matrix 1 −2 0 −2

5 1 −4 3
3 0 1 2


the transpose is 

1 5 3
−2 1 0
0 −4 1
−2 3 2

 .

transposition In any set of elements the opera-
tion that switches any two elements but leaves all
the others unchanged is called a transposition. It is
a special type of permutation.

transverse axis of hyperbola The axis (line)
passing through two foci of the hyperbola.

trapezoid A quadrilateral with one pair of parallel
sides.

trapezoidal rule One of the methods of approxi-
mate integration. To calculate the approximate value

of the integral
∫ b
a
f(x)dx using trapezoidal rule we

divide the interval [a, b] into n equal intervals of the
length ∆x = (b − a)/n with the points x0 = a, x1 =
a+ ∆x, x2 = a+ 2∆x, · · · , xn = b. Then∫ b

a

f(x)dx ≈ ∆x

2
[f(x0) + 2f(x1)

+2f(x2) + · · ·+ 2f(xn−1) + f(xn)].

For the degree of accuracy of this approximation see
error estimate for the trapezoidal rule.

triangle A geometric figure that consists of three
points (vertices) and three intervals connecting these
points. Any two adjacent intervals form an angle,
hence the name. Triangle is the simplest special case
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of a polygon.

triangle inequality For any two vectors u and v
in the Euclidean space Rn

||u + v|| ≤ ||u||+ ||v||,

where the symbol || · || indicates the norm (length,
magnitude) of a vector. The name comes from the
fact that this inequality generalizes the geometric fact
that any side of a triangle is shorter than the sum of
the other two sides. The triangle inequality has fur-
ther generalizations to the so-called metric spaces.

triangular matrix A matrix where all the ele-
ments above or below the main diagonal are zeros.
See also lower triangular, upper triangular matrices.

trigonometric equations Equations involving
trigonometric functions. Unlike identities, equations
are not true statements for all or ”almost all” values
of the variable, but might be true only for limited
number of values if considered in finite interval. In
cases when we are looking for solutions without re-
strictions on the interval, we usually get infinitely
many solutions but they are always periodic repeti-
tions of solutions on the finite interval. Examples:
The equation

sinx = 1/2

has only two solutions x = π/6, x = 5π/6 on the in-
terval [0, 2π). If considered on the real axis (−∞,∞),
if has infinitely many solutions found by adding ar-
bitrary multiple of 2π to the two basic solutions:
x = π/6 + 2πk, x = 5π/6 + 2πk, k = 0,±1,±2, · · ·.
Similarly, the equation

4 cos2 x− 1 = 0

has the solutions x = π/3, x = 2π/3 on [0, 2π) and
we get the general solution by adding a multiple of
2π to that solutions.

trigonometric form of the complex number
Let z = a + ib be a complex number. Then it can
be represented on the complex plane as a point with
coordinates a and b. The distance of this point from
the origin is the modulus of the number r =

√
a2 + b2.

Now, if we connect the origin with the point z, that

segment will form some angle θ with the real axis,
called the argument of z. The argument of a num-
ber can be found from the formula tan θ = b/a.The
trigonometric form of the number z is

z = r(cos θ + sin θ).

The Euler modification of this form is z = reiθ.
Trigonometric form is convenient when multiplying,
dividing, raising to whole power and especially for
finding the roots of complex numbers. See multi-
plication of complex numbers, division of complex
numbers, DeMoivre’s theorem,roots of a complex
number.

trigonometric functions The six functions
sinx, cosx, tanx, cotx, secx and cscx. For
the definitions and graphs of each of them see the
corresponding definitions.

trigonometric identities Identities involving
trigonometric functions. Identities can be true for
all values of the variable(s) or for all values except
where the functions are not defined. Trigonometric
formulas are also identities. Examples:

sin2 θ + cos2 θ = 1

cosx+ sinx tanx = secx

cos(x− y) = cosx cos y + sinx sin y.

trigonometric integrals A group of indefinite in-
tegrals that contain different combinations of trigono-
metric functions. For most of these combinations
there are methods to evaluate that integrals but not
all trigonometric integrals can be expressed in the
form of elementary functions.
1) Integrals of the form

∫
sinn x cosm xdx.

(a) If m = 2k + 1 is odd, then write∫
sinn x(cos2 x)k cosxdx

=

∫
sinn x(1− sin2 x)k cosxdx

and using the substitution u = sinx reduce the inte-
gral to algebraic:

∫
un(1− u2)kdx.
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(b) If n = 2s+ 1 is odd, then similar to the previous
case ∫

(sin2)s cosm x sinxdx

=

∫
(1− cos2 x)s cosm x sinxdx

and the substitution u = cosx again reduces integral
to algebraic.
(c) If both n and m are even, then the use of half-
angle formulas

sin2 x =
1

2
(1− cos 2x), cos2 x =

1

2
(1 + cos 2x)

(possibly multiple times) reduces the integral to easy
to evaluate form.
2) Integrals of the form

∫
tann x secm xdx.

(a) If m = 2k is even, then write∫
tann x(sec2)k−1 sec2 xdx

=

∫
tann x(1 + tan2 x)k−1 sec2 xdx

and substitute u = tanx using the fact that
(tanx)′ = sec2 x. Integral reduces to algebraic.
(b) If n = 2s+ 1 is odd, then write∫

(tan2 x)s secm−1 x secx tanxdx

=

∫
(sec2 x− 1)s secm−1 secx tanxdx

and substitute u = secx using the fact that
(secx)′ = secx tanx. Once again, the integral
reduces to algebraic.
3) In evaluating the integrals of the
form

∫
sinnx cosmxdx,

∫
sinnx sinmxdx or∫

cosnx cosmxdx it is useful to use the product-to-
sum formulas.
Many other trigonometric integrals can be calculated
by different methods. Among trigonometric integrals
that cannot be expressed with the use of elementary
functions is the integral

∫
sin(x2)dx.

Examples:∫
sin5 x cos2 xdx =

∫
(sin2 x)2 cos2 x sinxdx

=

∫
(1− cos2 x)2 cos2 x sinxdx

= −
∫

(1− u2)2u2du = −u
3

3
+ 2

u5

5
− u7

7
+ C

= −cos3 x

3
+

2 cos5 x

5
− cos7 x

7
+ C.

∫
tan6 x sec4 xdx

=

∫
tan6 x(1 + tan2 x) sec2 xdx

=

∫
u6(1 + u2)du =

u7

7
+
u9

9
+ C

=
tan7 x

7
+

tan9

9
+ C.

∫
sin 7x cos 4xdx

=
1

2

[∫
sin 3xdx+

∫
cos 11xdx

]
== −1

6
cos 3x+

1

22
sin 11x+ C.

trigonometric series A finite or infinite series of
the form

c+

∞∑
n=1

(an cosnθ + bn sinnθ).

In the case the coefficients c, an, bn have special re-
lations to some function f(x), the series becomes a
Fourier series. See the corresponding entry.

trigonometric substitutions See integration by
trigonometric substitution.

trinomial A polynomial that has three terms. Tri-
nomial might have one or more variables. Examples:
2x2 − 5x+ 6, 3x3y2 + 4x2y4 − 6xy.

triple product Or scalar triple product of three
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vectors u,v,w in three dimensional space is defined
as u · (v×w) and could be calculated by the formula

u · (v ×w) =

∣∣∣∣∣∣
u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
trivial solution An obvious, very simple solution
of an equation or system of equations. As a rule,
trivial solution is a zero solution. Any homogeneous
linear system has a trivial solution. Many differen-
tial equations have trivial (identically zero) solution
along with non-zero solutions.

twisted cubic A space curve given by the vector-
function r(t) = (t, t2, t3).

U

unbiased statistic A sample statistic whose
sampling distribution has a mean value equal to the
mean value of the population parameter that it is
estimating. Sample mean, proportion and variance
are unbiased statistics but the sample standard
deviation is not.

unbounded function A function that is not
bounded from above, below, or both. The functions
f(x) = lnx, g(x) = x2 are unbounded but the
function h(x) = sinx is bounded.

unbounded region In case of a plane region, it
is called bounded if it could be enclosed in some
circle of finite radius centered at the origin. If there
is no such circle, then the region is unbounded.
Any region given by an inequality y > ax + b is
an example of an unbounded region. Unbounded
regions in the three dimensional space are defined
similarly.

undefined function A function that is not or
cannot be defined for certain values of the variable.
For example, the function f(x) = 1/x is undefined
for x = 0 because division by zero is not defined.

undercoverage (of population) In statistics,
when sampling, sometimes certain parts of the
population are covered less that the others. For
example, when conducting telephone polls, people
without phones are not covered at all.

underdetermined linear system A system
of linear equations that has more unknowns than
equations. If this system is consistent, then it has
infinitely many solutions. See also overdetermined
linear systems.

undetermined coefficients Also called the
method of undetermined coefficients for certain
types of equations. In using this method we either
know or guess the form of the solution but do not
know the value of the constant(s) and are trying
to determine that value. One of the versions of
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this method is described in the definition of partial
fraction decomposition. Second application is for
solution of non-homogeneous linear differential equa-
tions, working mainly for equations with constant
coefficients.
Suppose we are trying to find a particular solution
of the equation

y′′ − 3y′ − 4y = 3e2t.

We guess that the solution should have the form
Y (t) = Ae2t, where A is yet to be determined
coefficient. After we plug-in this supposed solution
into the equation we get (4A − 6A − 4A)e2t = 3e2t

and A = −1/2 and the coefficient is found.
Similar method also works for the systems of linear
equations where, of course, we have to solve systems
of linear algebraic equations with respect to a
number of undetermined coefficients.

uniform distribution A continuous probability
distribution where the density curve is a function that
is constant on some interval [a, b] and is zero every-
where else. Because of the requirement that the area
under the curve should be 1, the height of the line is
1/(b− a).

union of sets If A and B are two sets of some
objects, then their union A ∪ B is defined to be
the set of all elements that belong to A or B or
both of them. Example: If A = {1, 3, 5, 7} and
B = {2, 4, 6, 8} then A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8}.
In case when the two sets have common elements,
then in the union these elements are counted only
once. Hence, if A = {1, 2, 3} and B = {2, 3, 4}, then
A ∪B = {1, 2, 3, 4}.

uniqueness theorems See existence and unique-
ness theorems.

unit step function Similar to the Heaviside func-
tion, defined by the formula

uc(t) =
{

1 if t ≥ c
0 if t < c

for c ≥ 0. The Laplace transform of this function is
the function L[uc(t)] = e−cs/s, s > 0.

unit circle A circle with radius equal to one. In
Cartesian coordinate system such a circle could be
given by the equation (x− a)2 + (y − b)2 = 1, where
(a, b) is the coordinate of the center. The picture
shows the unit circle with center at the origin.

unit sphere A sphere with radius one. In Carte-
sian coordinate system the equation is x2 +y2 +z2 =
1. The notion of the sphere extends also to higher
dimensional Euclidean spaces.

unit vector A vector that has norm (length, mag-
nitude) equal to 1. If v is an arbitrary non-zero vector
in the vector space V , then the vector u = v/||v|| has
unit norm and hence, is a unit vector. See also nor-
mal vector, tangent vector.

unitary diagonalization Suppose A is some
square matrix and P is a unitary matrix of the same
size. Then A is said to be unitary diagonalizable if
the matrix P−1AP is diagonal.

unitary matrix A matrix A with complex entries
is unitary, if its inverse A−1 is equal to its conjugate
transpose A∗. The matrix

1

2

(
1 + i 1 + i
1− i 1− i

)
.
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is a unitary matrix.

unlike fractions Two (or more) fractions that
have different denominators. The fractions 3

4 and 4
7

are unlike fractions. On the other hand, the fractions
3
8 and 6

16 are not unlike fractions because the second
one could be reduced to simplest terms as 3

8 with the
same denominator.

unlike terms Two terms in an algebraic expression
that do not have identical variable parts (factors). In
the expression 2xy + 2xy2 the two terms are unlike
terms, because xy and xy2 are not identical. The
constant factors do not play role in deciding if the
terms are like terms or unlike terms.

upper triangular matrix A square matrix where
all the entries below the main diagonal are zeros. Ex-
ample:  2 4 2

0 1 −3
0 0 3

 .

The determinant of such a matrix is just the product
of all diagonal elements. See also lower diagonal
matrix.

V

value of a function The numeric expression of a
given function at a given point. Examples: (1) The
value of the function f(x) = 3x3 − 2x2 + 5x − 1 at
the point x = 2 is determined by substituting the
value x = 2 in the expression of the function: f(2) =
3 · 23 − 2 · 22 + 5 · 2 − 1 = 25. (2) The value of the
function f(x) = sinx at the point x = π/6 is 1/2.
To calculate the values of more complicated functions
approximate methods and/or calculators are needed.

variable One of the basic mathematical objects
along with constants, functions, etc. Variables are
quantities that do not have fixed value (as the
constants) but rather have the ability to change. For
example, time is a variable quantity because it does
not stand still. Variables are denoted by symbols
such as x, y, z, t, u, and others. In certain situations
there might be two or more variable quantities
and if they are related to each other by some rule
or formula, we call that a function or relation.
Accordingly, the variables in that relations would
be independent or dependent. See also the entries
explanatory, quantitative, qualitative, response,
random, lurking variables.

variance For a set of numeric values
x1, x2, x3, · · · , xn with the mean µ, the variance
is defined by the formula

σ2 =

∑n
i=1(xi − µ)2

n− 1
.

The square root of this quantity is called standard
deviation.

variation Specific types of relationships between
two or more variable.
(1) Direct variation. In this case one of the variables
is directly proportional to another variable in some
form. For example if y = kx (k is some numeric con-
stant) we say that y varies directly with x. If y = kx2

then y varies directly with x2.
(2) Inverse variation. In this case one variable is in-
versely proportional to some form of the other vari-
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able. If y = k/x we say that y varies inversely with
x. If y = k/

√
x, then y varies inversely with

√
x, and

so on.
(3) Joint variation. In this case one variable is di-
rectly or inversely proportional to some forms of two
or more other variable. Example: z = kx2/y3.

variation of parameters A method of finding a
particular solution for non-homogeneous linear differ-
ential equations. This method is the development of
the method of undetermined coefficients and allows
to find particular solutions for much wider classes of
equations.
Suppose we want to find the general solution of the
equation

y′′ + p(t)y′ + q(t)y = g(t). (1)

First of all, the general solution of this equation is
the combination of the general solution of the corre-
sponding homogeneous equation

y′′ + p(t)y′ + q(t)y = 0 (2)

and any particular solution of the equation (1). As-
sume also that we know the general solution of the
homogeneous equation (2) and it is

yh(t) = c1y1(t) + c2y2(t),

where y1, y2 are two linearly independent solutions.
The idea behind the method of variation of parame-
ters is to replace constants c1, c2 by some, yet to be
determined functions u1(t), u2(t) and try to find a
particular solution in the form

Y (t) = u1(t)y1(t) + u2(t)y2(t).

Theorem. The particular solution of the equation (1)
could be written in the form

Y (t) = −y1(t)

∫ t

t0

y2(s)g(s)

W (y1, y2)(s)
ds

+y2(t)

∫ t

t0

y1(s)g(s)

W (y1, y2)(s)
ds,

where W (y1, y2) is the Wronskian of y1 and y2.
Example: To solve the equation

y′′ + 4y = 3 csc t

we notice that the corresponding homogeneous equa-
tion y′′ + 4y = 0 has the general solution y(t) =
c1 cos 2t + c2 sin 2t and look for a particular solu-
tion of the non-homogeneous equation in the form
Y (t) = u1(t) cos 2t + u2(t) sin 2t. Now, the Wron-
skian of this equation is W = 2 and by the Theorem
above, u1(t) = −3 cos t and u2(t) = 3/2 ln | csc t −
cot t| + 3 cos t. Plugging in these functions into the
previous formula we find a particular solution of the
non-homogeneous equation:

Y (t) = −3 sin t cos 2t+ 3 cos t sin 2t

+
3

2
sin 2t ln | csc t− cot t|.

Similar method works also for equations of higher or-
der and for systems of non-homogeneous equations.

vector One of the basic mathematical objects, vec-
tors could be viewed as quantities that have both
some numeric value and a direction. Many physical
notions (such as force or pressure) have that proper-
ties and vectors are abstract mathematical represen-
tations of these facts. As with the other mathemati-
cal objects (numbers, variables, functions, matrices),
many operations are possible to perform with vectors
too. As objects, vectors may exist on the plane, three
dimensional space, or more generally, in any vector
space.
1) Addition of vectors in the plane is defined by the
parallelogram rule (see addition and subtraction of
vectors). More generally, if v and u are two vectors
in some vector space V , then

v + u = (v1 + u1, v2 + u2, · · · , vn + un),

where v = (v1, v2, · · · , vn), u = (u1, u2, · · · , un).
2) The scalar product of a number c and the vector
v is defined as cv = (cv1, cv2, · · · , cvn).
3) It is impossible to define a product of two vec-
tors in any space V in such a manner that the result
be another vector from the same space and at the
same time satisfy all the expected properties of mul-
tiplication (commutative, associative, distributive).
Instead, the inner product (or dot product) of two
vectors could be defined which is not a vector but
a number (real or complex, depending on the space
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V ): v · u = v1u1 + v2u2 + · · ·+ vnun. See also cross
product for one specific type of vector multiplication.
4) The length (or magnitude, or norm) of a vector is
now defined as ||v|| =

√
v · v.

5) The angle between two vectors now could be de-
fined with the help of inner product as follows:

cos θ =
v · u
||v||||u||

.

Two vectors are called parallel if the angle between
them is either zero or π(= 180◦). In case when the
angle is π/2 = 90◦, the vectors are called perpendic-
ular, or orthogonal.
For additional facts about vectors see also basis, lin-
ear dependence and independence of vectors, tangent
vector, unit vector, zero vector.

vector field Let D be a region on the plane. A vec-
tor field F is a function that maps any point (x, y)
from D to another point on the plane. This vector
field could be written now as

F(x, y) = P (x, y)i +Q(x, y)j,

where P, Q are ordinary functions of two variables.
Vector fields can be defined also for three or any
higher number of variables in exactly the same way.
See also curl of the vector field, flux, gradient vector
field.

vector function A vector such that the coordi-
nates (components) are functions. Example: F(t) =
(f(t), g(t), q(t)) = (sin t, cos t, t).

vector product The product of two vectors is im-
possible to define in a way that the result be another
vector from the same space with expected proper-
ties of multiplication as we have them for numbers,
variables, or functions. For special forms of vector
products see cross product, inner product.

vector space The abstract vector space V is a col-
lection of objects called vectors for which the op-
erations of vector addition and scalar multiplication
are defined. Denoting the vectors by u,v,w, ... and
scalars by k, `, ... we require that they satisfy the fol-
lowing list of axioms of the vector space:
(1) If u and v belong to V , then u + v also belongs

to V ;
(2) u + v = v + u;
(3) u + (v + w) = (u + v) + w;
(4) There is a vector 0 in V , named zero vector, such
that u + 0 = 0 + u = u;
(5) For each u in V there is a vector −u also in V ,
such that u + (−u) = (−u) + u = 0;
(6) If u is in V then ku is also in V ;
(7) k(u + v) = ku + kv;
(8) (k + `)u = ku + `u;
(9) k(`u) = (k`)u;
(10) 1u = u.
If the scalars k, `, ... are real then the vector space is
called real vector space. In case when we chose com-
plex scalars, the space is called complex vector space.
Among the most common examples of vector spaces
are the Euclidean space Rn, the space of all m × n
matrices, the space of all polynomials of degree n or
less, and many others.

Venn diagram A graphical method of represent-
ing sets and their relations. Used in set theory, logic,
statistics, and probability theory. Especially helpful
in understanding the union, intersection of sets. Be-
low is a typical Venn diagram of intersection of two
sets.

vertex A term used in many different situations
with slightly different meaning. In some sense ver-
tices are the ”extreme points” of geometric objects
and figures. For example, the vertex of an angle is the
point from where the two rays forming the angle come
out (see also angle). For a polygon or a polytope the
vertices are the ”corner” points of that figures. At
the same time the notion of the vertex also applies
to other geometric figures, such as ellipses, parabo-
las, and hyperbolas. See the corresponding entries



153

for exact descriptions.

vertical asymptote The (vertical) line x = a is a
vertical asymptote for a function f(x) if that func-
tion grows unboundedly as the point x approaches
the point a. In terms of limits this property is pre-
sented by one of the following limit conditions:

lim
x→a

f(x) =∞, lim
x→a−

f(x) =∞

lim
x→a+

f(x) =∞, lim
x→a

f(x) = −∞

lim
x→a−

f(x) = −∞, lim
x→a+

f(x) = −∞.

These conditions mean that the function cannot have
a finite (specific) value at that point. As a result, the
function’s graph can never cross the vertical asymp-
tote. Examples: (1) For the function f(x) = 1/x2

the line x = 0 (the y-axis) is the only vertical asymp-
tote. (2) The function f(x) = x2/(x− 1)(x + 2) has
vertical asymptotes x = 1 and x = −2.

vertical line test A geometric method of deter-
mining if a given graph is a graph of a function or a
relation. If any vertical line crosses the graph only
once, then it is a function, because that means that
to each value of x there is only one corresponding
value of y. If this condition is violated at even one
point we have a relation instead of a function. This
method is not precise because it depends on graph-
ing skills that are subjective, still it is a useful visual
tool.

vertical shifts of graphs Addition or subtraction
of any constant to any given function results in the
vertical shift (up or down) of the graph of that func-
tion. Example:

f(x) = sinx, g(x) = sinx+ 2.

The graphs of f and g are identical except that the
second one takes values two more than the first one.
Its graph is two units above the graph of f .

volume A geometric notion indicating the amount
of space occupied by an object in three-dimensional
space. The volumes of simple geometric solids, such
as prisms, pyramids, spheres, cylinders, cones, and
others are known for a long time. For calculations

of volumes of more complicated solids it is necessary
to involve calculus. In general, if a solid is defined
by a function z = f(x, y), where the variables (x, y)
are changing on some rectangle D = [a, b] × [c, d],
then the volume of that solid is given by the double
integral

V =

∫ b

a

∫ d

c

f(x, y)dxdy.

In cases when the solid is a solid of revolution of some
curve about some axis, or if the solid has some other
extra properties of symmetry, the volume could be
calculated by the method of cylindrical shells or discs
(washers).
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wave equation For differential equations. In case
of a function of two spacial variables x, y, and the
time variable t, the equation

∂2u(x, y, t)

∂t2
=
∂2u(x, y, t)

∂x2
+
∂2u(x, y, t)

∂y2
.

In the simpler case of one spacial variable x and time
variable t the equation has the form a2uxx = utt.

weighted mean Or weighted average. In cases
when different numbers have different weights, their
average or mean is calculated using the weighted
mean formula. Let w1, w2, · · · , wn be all positive
numbers (some may be zero, but not all) and as-
sume that x1, x2, · · · , xn are numeric values with cor-
responding weights. This means that the value xi has
the weight wi, 1 ≤ i ≤ n. Then the weighted mean
is

xw =
w1x1 + w2x2 + · · ·+ wnxn

w1 + w2 + · · ·+ wn
.

In cases when the sum of wi is 1, the formula sim-
plifies to xw =

∑n
i=1 wixi. Example: Assume a stu-

dent get the scores 62, 78, 81, 92 on her tests, 84 on
the Final, and 90 for her homework. Each test is
valued at 15%, the Final is 30% and homework is
valued at 10%. Then the mean score of the stu-
dent will be 0.15(62 + 78 + 81 + 92) + 0.3 · 84 + 0.1 ·
90 = 72.95, because the sum of all weights is one
(0.15+0.15+0.15+0.15+0.3+0.1=1).

weighted inner product Let u = (u1, u2, · · · , un)
and v = (v1, v2, · · · , vn) be two vectors in the Eu-
clidean space Rn and assume w1, w2, · · · , wn is a se-
quence of positive numbers. Then the weighted inner
product with this sequence (weight) is

〈u,v〉w = w1u1v1 + w2u2v2 + · · ·+ wnunvn.

whole number The set of the whole numbers
consists of all natural numbers with addition of
the number zero. Hence, the whole numbers are:
0, 1, 2, 3, 4, · · ·

Wronskian Consider the second order linear ho-
mogeneous equation

y′′ + p(x)y′ + q(x)y = 0

with the initial value conditions y(t0) = y0, y
′(t0) =

y′0. Assume also that y1 and y2 are two solutions of
the equation (without initial conditions). The deter-
minant

det

(
y1(t0) y2(t0)
y′1(t0) y′2(t0)

)
is called the Wronskian of the equation and plays
important role in finding the general solution of the
equation. See Abel’s formula for the presentation of
the Wronskian and variation of parameters for an ap-
plication. Wronskian also generalizes to the case of
homogeneous equations of arbitrary order n. For the
equation

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = 0

with solutions y1, y2, · · · , yn, the Wronskian is the de-
terminant

det


y1 y2 . . . yn
y′1 y′2 . . . y′n

...
...

...
y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n


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x-axis In Cartesian coordinate system on the plane
the horizontal axis. The projection of any point on
the plane onto the x-axis gives the x-coordinate of
the point, always written first. For example, for the
point (5,−3) the first entry 5 is the x-coordinate.

x-coordinate See above, x-axis.

x-intercept The intersection of the graph of any
function with the x-axis. For polynomials, trigono-
metric, logarithmic, exponential and other functions,
these points coincide with the zeros of the corre-
sponding types of equations. Examples: (1) To find
the x-intercepts of the function f(x) = x3 + 3x2 −
4x − 12 we solve the corresponding algebraic equa-
tion x3 + 3x2 − 4x − 12 = 0. This equation has
the zeros x = 2,−2,−3 and that points are exactly
the x-intercepts of the function f(x); (2) The func-
tion f(x) = sin 2x has the intercepts x = πn/2, n =
0,±1,±2, · · · because they are the solutions of the
corresponding trigonometric equation sin 2x = 0.

y-axis In Cartesian coordinate system on the plane
the vertical axis. The projection of any point on the
plane onto the y-axis gives the y-coordinate of the
point, always written second. For example, for the
point (5,−3) the second entry -3 is the y-coordinate.
See the figure above.

y-coordinate See above, y − axis.

y-intercept The intersection of the graph of any
function with the y-axis. If that function is defined

for the value x = 0 then it always has the y-intercept.
Unlike x-intercepts, a function may have no more
than one y-intercept. On the other hand, a relation
may have more than one y-intercept. Examples: (1)
The function f(x) = x3 + 3x2−4x−12 has the value
f(0) = −12 and that is the only y-intercept of that
function; (2) The function f(x) = 1/x is not defined
for x = 0 and, as a result, does not have a y-intercept;
(3) The relation x2 + y2 = 1 representing the unit
circle has two y-intercepts at the points (0, 1) and
(0,−1).

z-axis In three-dimensional Cartesian coordinate
system, in addition to x- and y-axes, there is also
the z-axis, that is perpendicular to the plane formed
by these two axes. Any point in the space has three
orthogonal projections, corresponding to three axes.
The projection onto the z-axis gives the z-coordinate
of the point that is always written on the third po-
sition: For the point (1,2,3) the third entry 3 is the
z-coordinate.

z-coordinate See above, z-axis.

z-score Suppose x is a random variable and assume
x̄ is its mean and s its standard deviation. The quan-
tity z = (x − x̄)/s is the z-score (or standardized
value) of the variable x. If the variable x belongs
to a normal distribution with the mean x̄ and stan-
dard deviation s, then the variable z (the z-score)
belongs to standard normal distribution: its mean is
zero and standard deviation is 1. The z-score mea-
sures the distance of the value x from the mean in
terms of standard deviation units. z-scores are also
sometimes called z statistic.

zero Originally, one of the integers in the real num-
ber system that is smaller that 1 but greater than
−1. The only real number that is neither positive
nor negative. The most important property of zero
is that it is the additive identity which is expressed
algebraically as a+ 0 = a.
The importance of the number zero goes beyond the
real numbers because it serves as the additive iden-
tity also for the complex numbers: If z is any complex
number, then z + 0 = z. Also, zero could be consid-
ered as the ”zero function” that for all values of the
variable x equals to zero. In this interpretation zero
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is also the additive identity in the set of all functions.
See also zero matrix.

zero factor property Also called zero product
property. If for two numbers (real or complex) a and
b, a · b = 0, then either a = 0 or b = 0 or both are
zero. This property of numbers is one of the most
important tools in solving algebraic or trigonometric
equations. Examples: (1) x3+3x2−4x−12 = 0. Fac-
toring the polynomial on the left side by grouping, we
get the equation (x− 2)(x+ 2)(x+ 3) = 0 which by
the zero factor property results in three linear equa-
tions x−2 = 0, x+2 = 0, x+3 = 0 with the solutions
x = 2, x = −2, x = −3. (2) sin 2x− cosx = 0. Using
the double angle formula for the sine function and fac-
toring we get cosx(2 sinx− 1) = 0 and again, by the
zero factor property this results in two simpler equa-
tions cosx = 0 and sinx = 1/2. The solutions on the
base interval [0, 2π) are: x = π/2, 3π/2, π/6, 5π/6.
The zero factor property is not true for other mathe-
matical object, for example for matrices: If the prod-
uct A ·B of two matrices is the zero matrix then none
of the matrices A or B are necessarily the zero ma-
trices themselves.

zero matrix A matrix of arbitrary size m×n such
that all of the entries are zeros. Example: 0 0 0 0

0 0 0 0
0 0 0 0

 .

This matrix is the additive identity in the set of all
matrices of the same size: Adding this matrix to any
other matrix does not change it.

zeros of the equation Also called roots or solu-
tions of the equation. Any real (or complex) number
that substituted into the equation results in numeric
identity. The number x = 2 is the zero of the equa-
tion x2 − x − 2 = 0 because substituting that value
into the left side of the equation results in numeric
identity 0 = 0. Every polynomial equation of degree
n ≥ 1 has exactly n zeros, if we accept complex zeros
and count them according to multiplicity. See also
Fundamental Theorem of Algebra.

zero subspace The subspace of a vector space that
consists of a single zero vector x = 0. Zero subspace

is the part of any vector space.

zero transformation The (linear) transformation
between any vector spaces V andW such that T (u) =
0 for any vector u ∈ V .

zero vector The vector that has all zero com-
ponents: 0 = (0, 0, · · · , 0). This vector plays the
role of the additive unity for any vector space:
x + 0 = 0 + x = x for any vector x of the vector
space.


