Glendale Community College Cyclical Review: November 2016

#### COURSE OUTLINE

# Astronomy 110 Astronomy of the Solar System

## **Catalog Statement**

ASTRO 110 is a survey of the Sun, planets, moons, and other objects that make up the solar system with a consideration towards applying this knowledge to new findings in astronomy such as exoplanets. Topics may include the history of astronomy, the practice of modern science, solar system formation, planetary geology, planetary atmospheres, the physics of astronomy (gravity, light, conservation laws, etc.), telescopes and observational methods, exoplanets, and the search for life in the universe.

Total Lecture Units: 3.0
Total Laboratory Units: 0.0
Total Course Units: 3.0

Total Lecture Hours: 48.0 Total Laboratory Hours: 0.0

Total Laboratory Hours To Be Arranged: 0.0

**Total Faculty Contact Hours: 48.0** 

Prerequisite: None.

Recommended Preparation: Eligibility for ENGL 101

### **Course Entry Expectations**

Prior to enrolling in the course, the student should be able to:

- organize and write thesis-based essays;
- use detailed examples, facts, logical explanations, and other appropriate support for thesis statements;
- analyze critically selected works that deal with important contemporary issues;
- summarize, analyze and synthesize information, express and apply standards for judgment, compare and contrast, and evaluate evidence in order to form and state reasoned opinions;
- compile and organize information through library research;
- demonstrate a command of grammar, diction, syntax and mechanics sufficient for English 101 entrance: communicating (both orally and in writing) in standard English, with few major errors in grammar and punctuation.

## **Course Exit Standards**

Upon successful completion of the required coursework, the student will be able to:

- identify, classify and compare the bodies of our solar system;
- recognize and explain the movements of the Sun, Moon and planets, as viewed from Earth, over the course of time;

- examine and critique both the geocentric and the heliocentric models of our solar system and explain them within a historical perspective;
- explain the production, transmission, refraction and reflection of electromagnetic radiation and the detection of this radiation by both Earth-based and space-based instruments.

## **Course Content**

### **Total Faculty Contact Hours = 48.0**

The Copernican Revolution (6 hours)

The geocentric model of Ptolemy

The heliocentric model of Copernicus

Galileo's telescope observations

Kepler's Laws of Planetary Motion

The physics of astronomy (8 hours)

Newton's Laws of Motion and Gravity

Conservation laws in physics

The properties of light

The magnitude system

The electromagnetic spectrum

Doppler shifts

Spectroscopy

Atomic structure and spectral lines

Using spectroscopy to learn about planets

Telescopes (2 hours)

Refractors and reflectors

Infrared and radio telescopes

Spacecraft exploration (1 hour)

Spacecraft orbits

Instruments carried by spacecraft

An overview of the solar system (4 hours)

General properties and patterns

The Sun

The gravitational influence of the Sun on the planets

The energy source of the Sun; nuclear energy

Terrestrial and Jovian planets

Earth and the Moon (8 hours)

Mapping the sky as seen from Earth

The zodiac; the ecliptic

The way the sky changes with the seasons

Eclipses of the Sun and Moon

Moon phases

The atmosphere of Earth

the magnetosphere of Earth; auroras

The interiors of the Earth and the Moon

the surfaces of the Earth and the Moon; impact craters

Mercury (1 hour)

**Bulk** properties

Surface features; the findings of the Mariner 10 spacecraft

## Venus (1 hours)

**Bulk** properties

Surface features; the findings of the Magellan spacecraft

Atmosphere

# Mars (2 hours)

Bulk properties

Surface features

Atmosphere

Satellites

Recent discoveries and missions

# Jupiter (1 hours)

**Bulk** properties

Surface features

Atmosphere

Satellites

#### Saturn (1 hours)

Bulk properties

Atmosphere

Magnetosphere

Ring system

Satellites

Recent discoveries and missions

### Uranus, Neptune and Pluto (1 hours)

The discovery of the outermost planets

**Bulk** properties

Atmosphere

Ring system

Satellites

Recent discoveries and missions

## Small objects in the solar system (2 hours)

Meteoroids, meteors and meteorites

Asteroids

Comets

Recent discoveries and missions

### The formation of the solar system (6 hours)

The solar nebular theory

The giant impact origin of our Moon

### Exoplanets (2 hours)

Detection methods

New findings

## Life in the universe (2 hours)

The origins of life on Earth

The possibilities of life in our solar system

The Fermi paradox and possible resolutions

### **Methods of Instruction**

The following methods of instruction may be used in this course:

- classroom lecture and discussion;
- short educational videos on specific topics;
- use of online astronomy databases;
- planetarium demonstrations.

## **Out of Class Assignments**

The following out of class assignments may be used in this course:

- reading assignments;
- web project (e.g. find the photo titled the Hubble Extreme Deep Field on the Hubble Space Telescope website and write a short summary of how the photo was taken, what it shows, and what we've learned from it);
- problem sets and short response questions;
- recognition of physical laws given actual astronomical data.

## **Methods of Evaluation**

The following methods of evaluation may be used in this course:

- in-class exercises.
- in-class quizzes;
- two 1.5-hour examinations;
- one final exam.

#### **Textbooks**

Bennett, Jeffrey, O, et al. The Cosmic Perspective: The Solar System.8th ed.

New York City: Pearson, 2016.

12<sup>th</sup> Grade Reading Level ISBN: 9780321841063

Prather, Edward E, Jack A. Dostal, and Colin S. Wallace. *Lecture-tutorials for Introductory Astronomy*. 3<sup>rd</sup> ed. Boston: Pearson, 2013. Print.

12<sup>th</sup> Grade Reading Level ISBN: 9780321820464

### **Student Learning Outcomes**

Upon successful completion of the required coursework, the student will be able to:

- explain the methods astronomers use to study objects in the solar system;
- recognize the results of Earth-based and space probe studies of objects in the solar system.