

Cyclical Review: August 2020

COURSE DISCIPLINE: BIOL

COURSE NUMBER: 101

COURSE TITLE (FULL): General Biology I

COURSE TITLE (SHORT): General Biology I

CALIFORNIA STATE UNIVERSITY SYSTEM C-ID: BIOL 190 - Cell and Molecular Biology

CATALOG DESCRIPTION

BIOL 101 is the first half of a one-year course designed for biological science majors. It covers fundamental biological principles and processes including: the scientific method, biochemistry, metabolism, cell respiration, photosynthesis, molecular biology, cell structure and function, mitosis and meiosis, Mendelian genetics, molecular genetics, and gene regulation.

Total Lecture Units:3.00

Total Laboratory Units: 1.00

Total Course Units: 4.00

Total Lecture Hours:54.00

Total Laboratory Hours: 54.00

Total Laboratory Hours To Be Arranged: 0.00

Total Contact Hours: 108.00

Total Out-of-Class Hours: 108.00

Prerequisite: CHEM 101.

Cyclical Review: August 2020

ENTRY STANDARDS

	Subject	Number	Title	Description	Include
1				Describe the scientific method and apply it to the development of the science of chemistry;	Yes
2				describe chemical processes in terms of chemical equations and be able to use the equations to answer quantitative questions concerning the process described;	Yes
3				analyze modern theories of atomic motion, especially as they apply to gases;	Yes
4				utilize bonding theories to describe the chemical nature of ions and molecules;	Yes
5				demonstrate an understanding of intermolecular forces and apply those forces to the nature of solids and liquids;	Yes
6				demonstrate the proper use of laboratory equipment and the ability to handle chemicals safely.	Yes

EXIT STANDARDS

- 1 Identify the properties of lipids, carbohydrates, proteins, and nucleic acids;
- 2 describe the structure of prokaryotic and eukaryotic cells;
- 3 explain cell respiration and photosynthesis;
- 4 describe and identify the different stages in mitosis;
- 5 describe the relationships between meiosis and Mendelian genetics;
- 6 solve Mendelian genetics problems, including autosomal, X-linked genes and dihybrid crosses;
- 7 describe the processes of DNA replication, transcription, and translation;
- 8 explain the basic mechanisms of gene regulation in prokaryotes and eukaryotes.
- 9 demonstrate proper use of laboratory equipment including the microscope, spectrophotometer, and micropipettes;
- 10 demonstrate proficiency with data collection, analysis, and graphical representation.

STUDENT LEARNING OUTCOMES

- describe and compare the structures of prokaryotic and eukaryotic cells and their biochemical composition;
- 2 explain the differences between mitosis and meiosis, the relationship between meiosis and Mendelian genetics, and how genes are expressed in prokaryotes and eukaryotes;
- 3 explain how organisms acquire energy by photosynthesis and cellular respiration;
- 4 compare the different forms of signal transduction, apply this knowledge to disease processes, and describe modern techniques in biotechnology.

Cyclical Review: August 2020

COURSE CONTENT WITH INSTRUCTIONAL HOURS

	Description	Lecture	Lab	Total Hours
1	 The scientific method and its current application in biology Unit conversion and significant figures Characteristics of living systems Overview of evolutionary theory as the central paradigm of the biological sciences 	1.5	6	7.5
2	Properties of water Functional groups and carbon based molecules Biological monomers and polymers Carbohydrates, lipids, proteins, and nucleic acids	6	6	12
3	Cell Biology Cell size and surface to volume ratio Prokaryotic and eukaryotic cell structure and function Cell membrane structure Active and passive transport across membranes	6	6	12
4	Laws of thermodynamics Oxidation-reduction and energy Phosphorylation Cellular respiration Fermentation Energy, pigments, and light Light dependent/independent reactions of photosynthesis	12	6	18
5	Cell Division • Chromosomes, genes, and DNA • Mitosis • Meiosis • Meiotic abnormalities	3	6	9

Cyclical Review: August 2020

	•		•
Mendelian Genetics	12	6	18
Molecular Genetics	7	6	13
Gene Regulation Basic prokaryotic models Bacterial growth and sterile techniques Inducible/repressible operons Basic eukaryotic models Transposable elements	5	6	11
• Micropipetting • Data analysis and graphing • Spectrophotometer use	1.5	6	7.5
<u> </u>	1		108

OUT OF CLASS ASSIGNMENTS

- 1 written lab reports (e.g. describe results of an enzyme kinetics experiment);
- 2 prepare graphs of experimental results.

METHODS OF EVALUATION

- 1 evaluation of written lab reports;
- 2 laboratory practical examinations;
- 3 lecture examinations (including multiple choice and essay questions).

Cyclical Review: August 2020

METHODS OF INSTRUCTION

✓ Lecture
✓ Laboratory
Studio
✓ Discussion
Multimedia
Tutorial
Independent Study
Collaboratory Learning
Demonstration
Field Activities (Trips)
Guest Speakers
Presentations

TEXTBOOKS

Title	Туре	Publisher	Edition	Medium	Author	IBSN	Date
Life: The Science of Biology	Required	MacMillan	12	Print		978131930 7042	2020