

COURSE DISCIPLINE :	CS/IS
COURSE NUMBER :	212
COURSE TITLE (FULL) :	Advanced Data Structures
COURSE TITLE (SHORT) :	Advanced Data Structures

CATALOG DESCRIPTION

CS/IS 212 is designed to provide a thorough coverage of data structures with data abstraction applied to a broad spectrum of practical applications. Students who take this course master the principles of programming as a tool for problem solving. Students solve practical problems in a computer-equipped laboratory using an object oriented programming language, such as JAVA. Some specific topics covered include hash tables, trees, persistent structures, indexed files, and databases.

Total Lecture Units: 3.00

Total Laboratory Units: 0.00

Total Course Units: 3.00

Total Lecture Hours: 54.00

Total Laboratory Hours: 0.00

Total Laboratory Hours To Be Arranged: 0.00

Total Contact Hours: 54.00

Total Out-of-Class Hours: 108.00

Prerequisite: CS/IS 211 or equivalent.

ENTRY STANDARDS

	Subject	Number	Title	Description	Include
1	CS/IS	211	Data Structures	Create computer programs using data structures such as arrays, records, strings, linked lists, stacks, queues, and hash tables;	Yes
2	CS/IS	211	Data Structures	create simple recursive functions and procedures;	Yes
3	CS/IS	211	Data Structures	explain how abstraction mechanisms aid in creating reusable software components;	Yes
4	CS/IS	211	Data Structures	create simple programs in an object-oriented programming language;	Yes
5	CS/IS	211	Data Structures	compare and contrast object-oriented analysis and design with structured analysis and design.	No

EXIT STANDARDS

- 1 Create computer programs solving more complex OOP problems;
- 2 explain more complex abstract data types such as trees, graphs, hash tables, and heaps;
- 3 explain queues, deques, and priority queues;
- 4 explain and program binary trees, full binary trees, and complete binary trees
- 5 explain 2-3 trees and n-trees and their advantages

STUDENT LEARNING OUTCOMES

- 1 design and develop a complex object oriented programs;
- 2 analyze and explain complex abstract data types;
- 3 apply use of trees and understanding of terminology

COURSE CONTENT WITH INSTRUCTIONAL HOURS

	Description	Lecture	Lab	Total Hours
1	Review of Basic Algorithms • Recursive solutions • Array Searching • File searching	9	0	9
2	Linked Lists List implementations that use arrays List implementations that link data Inheritance and lists Sorted lists 	5	0	5
3	Stacks The Abstract Data Type (ADT) stack Simple application of the ADT stack Applications utilizing Postfix and Infix expressions The relationship between stacks and recursion 	5	0	5

GLENDALE COMMUNITY COLLEGE --FOR COMPLETE OUTLINE OF RECORD SEE GCC WEBCMS DATABASE--Page 2 of 4

COURSE OUTLINE : CS/IS 212 D Credit – Degree Applicable COURSE ID 005226 Cyclical Review: August 2020

4	Queues • Queues • Deques • Priority queues	5	0	5
5	Class Relationships • Inheritance revisited • Dynamic binding and abstract classes • Applications • Advantages of an objects-oriented approach	5	0	5
6	Trees • Terminology • The ADT binary tree • The ADT binary search tree • General trees	5	0	5
7	Advanced Implementation of Tables • Balanced search trees • Hashing • Data with multiple organizations	5	0	5
8	Graphs • Terminology • Graphs as ADT • Graph traversals • Applications of graphs	5	0	5
9	External Methods External storage Sorting data in an external file External tables 	5	0	5
10	Advanced Topics in Data Structures	5	0	5
				54

OUT OF CLASS ASSIGNMENTS

- 1 homework exercises (e.g. develop ADTs, explain advantages and disadvantages of solutions, etc.);
- 2 programming problems (e.g. programming trees, binary trees, full binary trees, and complete binary trees).

METHODS OF EVALUATION

- 1 midterm examinations and quizzes;
- 2 final examination.

COURSE OUTLINE : CS/IS 212 D Credit – Degree Applicable COURSE ID 005226 Cyclical Review: August 2020

METHODS OF INSTRUCTION

Lecture
 Laboratory
 Studio
 Discussion
 Multimedia
 Tutorial
 Independent Study
 Collaboratory Learning
 Demonstration
 Field Activities (Trips)
 Guest Speakers
 Presentations

Title	Туре	Publisher	Edition	Medium	Author	IBSN	Date
Data Abstraction and Problem Solving with C++: Walls and Mirrors.	Required	New York: Addison Welsey.	7		Carrano, Frank	978- 013446397 1	2016