

COURSE DISCIPLINE :	ENGR
COURSE NUMBER :	298
COURSE TITLE (FULL) :	Undergraduate Research in Engineering I
COURSE TITLE (SHORT) :	Undergraduate Research in Engr I

CATALOG DESCRIPTION

ENGR 298 is a research and design course where diverse groups of students collaborate professionally to research and design an engineering product or process solving a real-world engineering problem tied to contemporary societal needs. Emphasis is placed on projects that help people by engaging multidisciplinary topics such as robotics, biomedical, and environmental engineering and sustainability. Typically, students learn technical and collaborative communication skills and publish academic papers or posters at local conferences.

Total Lecture Units: 1.50

Total Laboratory Units: 1.50

Total Course Units: 3.00

Total Lecture Hours: 27.00

Total Laboratory Hours: 81.00

Total Laboratory Hours To Be Arranged: 0.00

Total Contact Hours: 108.00

Total Out-of-Class Hours: 54.00

Prerequisite: ENGR 122, ENGR 125, ENGR 133, ENGR 140, ENGR 152, ENGR 156, or ENGR 111, or equivalent.

GLENDALE COMMUNITY COLLEGE --FOR COMPLETE OUTLINE OF RECORD SEE GCC WEBCMS DATABASE--Page 1 of 7

ENTRY STANDARDS

	Subject	Number	Title	Description	Include
1	ENGR	122	Engineering	Apply the principles of orthographic	Yes
			Graphics	projection to create complete multi-view	
				engineering drawings;	
2	ENGR	122	Engineering	use computer aided design software to	Yes
			Graphics	create 3D models, assemblies, exploded	
				views and engineering drawings;	
3	ENGR	122	Engineering	apply the engineering design process and	Yes
			Graphics	demonstrate its steps in a design project.	
4	ENGR	125	Programming	integrate software and hardware	Yes
			Concepts and	components in order to respond to physical	
			Methodologies for	phenomena and manipulate physical	
			Engineers	devices and objects;	
5	ENGR	125	Programming	demonstrate the interaction between	Yes
			Concepts and	software and the physical world;	
			Methodologies for		
	FNOD	105	Engineers		
6	ENGR	125	Programming	demonstrate awareness of industry	Yes
			Concepts and	standards for quality assurance and	
			Methodologies for	software life cycle such as ISO 9000 and	
7		450	Engineers	IEEE.	Maa
	ENGR	100	Programming and	while M-files with while and for loops and	res
			Problem-Solving in	user defined functions;	
0		150	NAILAD Drogromming and	write simple graphical upor interfaces	Vee
0	ENGR	100	Programming and	while simple graphical user interfaces,	res
Q	ENGR	133	Introduction to	interpret customer requirements, design	Vec
3	LINOIN	100	Engineering	need purpose or mission of an engineering	163
			Design	design problem:	
10	FNGR	133	Introduction to	explain importance of measurements and	Yes
	2.0010	100	Engineering	tolerancing to account for fitting	100
			Design	tereranening to account for manig,	
11	ENGR	133	Introduction to	demonstrate ability to function in a team.	Yes
			Engineering	,,	
			Design		
12	ENGR	140	Materials Science	apply knowledge of materials to engineering	Yes
			and Engineering	design decisions;	
13	ENGR	140	Materials Science	compare the strengths and weaknesses of	Yes
			and Engineering	different types of engineering materials;	
14	ENGR	152	Engineering	determine the forces that act on rigid bodies	Yes
			Mechanics -	which may include externally applied forces,	
			Statics	weight, normal forces, distributed loads,	
				friction and reactions at structural supports;	

GLENDALE COMMUNITY COLLEGE --FOR COMPLETE OUTLINE OF RECORD SEE GCC WEBCMS DATABASE--Page 2 of 7

COURSE OUTLINE : ENGR 298

D Credit – Degree Applicable COURSE ID 010196

Cyclical Review: August 2020

				3	0
15	ENGR	152	Engineering	analyze two dimensional and three	Yes
			Mechanics -	dimensional forces that act on rigid bodies in	
			Statics	static equilibrium;	
16	ENGR	152	Engineering	create force, shear and bending moment	Yes
			Mechanics -	diagrams to determine the location and	
			Statics	magnitude of the largest forces and	
				moments;	
17	ENGR	111	Computer Aided	complete a series of problems	Yes
			Design	demonstrating basic knowledge and skills in	
			SOLIDWORKS I	utilizing a computer aided drafting system;	
18	ENGR	111	Computer Aided	practices standard drawing procedures and	Yes
			Design	content such as number of views, type of	
			SOLIDWORKS I	views, appropriate dimensions to call out in	
				views, details in title block, and basic	
				geometric tolerancing.	

EXIT STANDARDS

- 1 Communicate effectively in an interdisciplinary, team-based environment;
- 2 interface with interdisciplinary sub-teams with varying specialties;
- 3 develop innovative design concepts to solve a problem or task;
- 4 create and test a prototype to assess the viability of a design concept;
- 5 create and present a design proposal to an audience of peers, professors, and industry professionals;
- 6 create and present a technical design plan to an audience of peers, professors, and industry professionals;
- 7 simulate the performance of designs with computer software before a physical product is available for testing;
- 8 evaluate, analyze, and critique the designs of peers and apply those insights to the creation of his or her own designs;
- 9 read and analyze technical documentation and specification sheets;
- 10 utilize proper laboratory safety protocols;
- 11 design a system to complete a specific task, and produce design data necessary to manufacture that system;
- 12 demonstrate fair and effective team building that includes support for team member cultural, racial, gender and disability differences that contribute to effective research and design;
- 13 apply knowledge of computer simulation techniques to evaluate the effectiveness of design concepts.

STUDENT LEARNING OUTCOMES

- 1 demonstrate effective teamwork to solve technical engineering design problems;
- 2 create conceptual designs to solve a task or problem and evaluate their viability through the construction of prototypes;
- 3 communicate technical results of engineering research and/or design to a broad audience through the effective use of media.

GLENDALE COMMUNITY COLLEGE

--FOR COMPLETE OUTLINE OF RECORD SEE GCC WEBCMS DATABASE--Page 3 of 7

COURSE CONTENT WITH INSTRUCTIONAL HOURS

	Description	Lecture	Lab	Total Hours
1	 Introduction to the Engineering Design Process Mission statement, customer need or problem definition Background research, trade studies, or benchmarking Definition of requirements Brainstorm, evaluate, choose potential solutions Calculations and analyses Develop prototype Testing Communication and iteration as necessary Communicate results The role of failure in engineering design 	3	8	11
2	 Engineering Tools and Safety Tools of engineering; software, hardware Computer aided design (mechanical parts, electronics, etc.) Design calculations and computer aided performance simulation Laboratory safety and equipment usage Hand tools for prototyping Manufacturing processes; additive (3D printing) and subtractive (machining) Testing equipment Testbed design 	4	13	17
3	 Team Building and Team Dynamics Elements of effective design teams Discrimination in the engineering workplace Gender and racial/ethnic microaggressions that hinder engineering teamwork Vouching for and supporting underrepresented or marginalized colleagues Harnessing all skills and experiences for excellence in engineering design Environmental sustainability, safety and engineering ethics 	4	13	17

	Engineering Calculations and Analyses			
4	 Hand calculations Computer calculations Simulations Reality checks of calculations Errors and omissions and corrections Engineering software and programming tools Algorithms and programming Finite element analysis (FEA) Computational fluid dynamics (CFD) Printed circuit boards (PCB) Introduction to control theory and microcontrollers 	4	13	17
5	 Technical Communication Types of technical communication used in engineering Importance of accurate and consistent communication and estimates Writing for engineering in private industry vs academia Lab reports, test reports, graphs, simulation results Respectful attitudes in engineering communications 	4	13	17
6	 Engineering Management Introduction to project engineering and engineering management Careers in project and engineering management Design reviews Reporting to managers and clients Ethics in engineering and project engineering 	4	13	17

	e jen		. August 1010
 Publication of Results Importance of communicating design results effectively Publishing in conferences and journals Writing technical memos, reports, academic papers and posters Student vs. professional publications Final Design Review 	4	8	12
			108

OUT OF CLASS ASSIGNMENTS

- 1 data collection (e.g. conduct a trade study or benchmarking of infant car seats);
- 2 analysis (e.g. stress calculation on a wheel support beam);
- 3 project proposals (e.g. a proposal for a design project including deliverables, budget, and timeframe);
- 4 group project (e.g. conceptual design of an autonomous robot that can climb stairs);
- 5 technical publication submission (e.g. engineering research poster submitted to a local conference such as the Society of Women Engineers (SWE).

METHODS OF EVALUATION

- 1 peer assessments (e.g. each team member anonymously evaluates themselves and their team members similar to industry practice);
- 2 individual skills demonstration (e.g. student demonstrates a computer based stress calculation);
- 3 instructor evaluation of in-class presentations (e.g. evaluation of preliminary design review, PDR);
- 4 final project (e.g. team presentation of their engineering design).

METHODS OF INSTRUCTION

V Lecture
🛃 Laboratory
Studio
V Discussion
🗹 Multimedia
Tutorial
Independent Study
Collaboratory Learning
Demonstration
Field Activities (Trips)
🗹 Guest Speakers
Presentations
TEXTBOOKS

Title	Туре	Publisher	Edition	Medium	Author	IBSN	Date
Introduction to Engineering Research	Required	Morgan & Claypool Publishers	1	Print	Wendy C. Crone	978168173 7997	2020