

COURSE DISCIPLINE : PHY

COURSE NUMBER : 103

COURSE TITLE (FULL) : Physics for Scientists and Engineers: C

COURSE TITLE (SHORT): Physics for Scientists & Engineers: C

CALIFORNIA STATE UNIVERSITY SYSTEM C-ID: PHYS 215 - Calculus-Based Physics for Scientists and Engineers: C

CATALOG DESCRIPTION

PHY 103 is the third course in a three-semester sequence intended for students majoring in engineering and the physical sciences. The course covers topics in theory of waves, acoustics, optics, thermodynamics, and modern physics. Computers and numerical techniques are used extensively in the laboratory component of the course.

CATALOG NOTES

Note: PHY 103 may be taken prior to PHY 102.

Total Lecture Units: 4.00

Total Laboratory Units: 1.00

Total Course Units: 5.00

Total Lecture Hours: 72.00

Total Laboratory Hours: 54.00

Total Laboratory Hours To Be Arranged: 0.00

Total Contact Hours: 126.00

Total Out-of-Class Hours: 144.00

Prerequisite: PHY 101 or equivalent and MATH 104E.

ENTRY STANDARDS

	Subject	Number	Title	Description	Include
1				Analyze the motion of objects with constant acceleration:	Yes
2				apply Newton's laws of motion to the	Yes
				dynamics of physical systems;	
3				use conservation laws to predict the state of	Yes
				dynamical phenomena;	
4				collect quantitative data from observations of	Yes
				physical phenomena;	
5				use computers to perform calculations and	Yes
				to make graphs;	
6				graph logarithmic and exponential functions;	Yes
7				integrate functions using a variety of	Yes
				techniques.	
8	MATH	104E	Calculus and	determine work done in applications	Yes
			Analytic Geometry	involving liquids and springs;	
9	MATH	104E	Calculus and	evaluate definite and indefinite integrals	Yes
			Analytic Geometry	using a variety of techniques, including	l
				integration by parts, trigonometric	
				substitution, and partial fractions;	
10	MATH	104E	Calculus and	evaluate improper integrals;	Yes
			Analytic Geometry		
11	MATH	104E	Calculus and	model differential equations;	Yes
			Analytic Geometry		
12	MATH	104E	Calculus and	work with exponential and logistic models of	Yes
			Analytic Geometry	growth and decay;	
13	MATH	104E	Calculus and	tind Taylor and Maclaurin series for a	Yes
			Analytic Geometry	function.	

EXIT STANDARDS

- 1 Describe important characteristics of waves;
- 2 analyze the superposition and interference of sound waves;
- 3 apply the principles of geometric optics to mirrors, lenses, and compound optical systems, such as telescopes and the human eye;
- 4 provide a microscopic, i.e. atomic, description of an ideal gas through the kinetic theory of such gases;
- 5 calculate properties, such as pressure, volume, and temperature, of thermodynamic systems;
- 6 describe the experimental evidence, such as blackbody radiation and the electron double-slit experiment, which led to the introduction of quantum mechanics;
- 7 apply principles of quantum mechanics to the emission and absorption spectra of atoms;
- 8 describe the operation and working principles of Michelson interferometers, grating spectrometers, and optical telescopes.

GLENDALE COMMUNITY COLLEGE --FOR COMPLETE OUTLINE OF RECORD SEE GCC WEBCMS DATABASE--Page 2 of 6

STUDENT LEARNING OUTCOMES

- 1 use computers to collect and analyze data;
- 2 demonstrate the ability to effectively and safely use scientific apparatus, such as calipers, micrometers, balance scales, lasers, ultrasound detectors, voltmeters, oscilloscopes, interferometers and spectrometers;
- 3 use the internet to find information about scientific issues and be able to assess the validity of the information;
- 4 apply theoretical knowledge to problems in experimental science and engineering;
- 5 use differential and integral calculus to model physical phenomena.

COURSE CONTENT WITH INSTRUCTIONAL HOURS

	Description	Lecture	Lab	Total Hours
1	 Ocillatory Motion Motion of a mass-spring system Motion of a pendulum 	6		
2	 Simple narmonic motion Wave Motion Amplitude, wavelength, and wave speed Period, frequency, and phase constant Mathematical description of a sinusoidal wave Waves on a string Angular frequency and wave number Polarization and wave dimension Wave equation 	6		
3	 Sound Waves Displacement description versus pressure description of sound waves Speed of sound waves Ray and wave front representations Doppler effect 	4		
4	Superposition of Waves Interference of two waves 	2		
5	Speed of Light and the Index of Refraction	1		
6	Law of Reflection	1		
7	Law of Refraction Total internal reflection 	2		
8	Dispersion	1		

GLENDALE COMMUNITY COLLEGE --FOR COMPLETE OUTLINE OF RECORD SEE GCC WEBCMS DATABASE--Page 3 of 6

	Ray Tracing			
9	 Flat mirror Spherical mirror Refracting surface Thin lenses 	2		
	Optical Instruments			
10	• Telescope • Human eye	2		
11	Interference of Point Sources	2		
	Diffraction			
12	 Young's double-slit experiment Huygen's principle Diffraction gratings 	3		
13	Light Polarization Malus's law Brewster's angle 	2		
	Fluid Mechanics			
14	 Pressure variation of pressure with depth Buoyant force Bernoulli's equation 	4		
	Temperature			
15	 Celsius, Fahrenheit, and Kelvin as units of temperature Thermal equilibrium Thermal expansion Ideal gas and the ideal gas law 	4		
	Heat and Thermodynamic Work			
16	 Heat capacitance Phase changes Work in thermodynamic processes First law of thermodynamics Heat transfer 	6	0	6
	Kinetic Theory of Gases			
17	 Specific heat of an ideal gas Equipartition principle Adiabatic processes Distribution of molecular speeds 	6	0	6

	Heat Engines and Heat Pumps				
18	 Second law of thermodynamics Carnot engine 	4	0	4	
	Entropy				
19	 Third law of thermodynamics Microscopic basis of entropy 	4	0	4	
	Introduction to Quantum Mechanics				
20	 Blackbody radiation Photoelectric effect Compton effect Electron double sit experiment De Broglie hypothesis 	6	0	6	
	Quantum Mechanics				
21	 Quantum mechanical wave function Bohr's model of the hydrogen atom 	4			
	Lab component				
22	 Measuring optical effects Measuring the speed of light Similar experimental labs 	0	54	54	

OUT OF CLASS ASSIGNMENTS

- 1 problem sets (e.g. analytical word problems assigned on a weekly basis);
- 2 written lab reports (e.g. describe and analyze the results of an optic experiement).

METHODS OF EVALUATION

- 1 lecture examinations (including multiple-choice questions, short-response questions, and analytical word problems);
- 2 laboratory practical examinations;
- 3 evaluation of problem sets;
- 4 evaluation of written lab reports;
- 5 final examination (including multiple-choice questions, short-response questions, and analytical word problems).

METHODS OF INSTRUCTION

✓ Lecture						
Laboratory						
Studio						
Discussion						
Multimedia						
Tutorial						
Independent Study						
Collaboratory Learning						
Demonstration						
Field Activities (Trips)						
Guest Speakers						
Presentations						

TEXTBOOKS

Title	Туре	Publisher	Edition	Medium	Author	IBSN	Date
Physics for Scientists and Engineers	Required	Brooks Cole	9	Print	Raymond Serway	13: 978- 113394727 1	2013
Physics 103 Laboratory Manual		Glendale Community College	1	Print	M. M. Afshar		2017