

COURSE OUTLINE: PHY 105 D Credit – Degree Applicable COURSE ID 004041

Cyclical Review: March 2019

COURSE DISCIPLINE: PHY

COURSE NUMBER: 105

COURSE TITLE (FULL): Algebra-based Physics: A

COURSE TITLE (SHORT): Algebra-based Physics: A

CALIFORNIA STATE UNIVERSITY SYSTEM C-ID: PHYS 105 - Algebra/Trigonometry-Based Physics A

CATALOG DESCRIPTION

PHY 105 is a general course that focuses on properties of matter, mechanics, heat, wave motion, and sound. It includes lectures, demonstrations, problems, and laboratory work.

Total Lecture Units:3.00

Total Laboratory Units: 1.00

Total Course Units: 4.00

Total Lecture Hours:54.00

Total Laboratory Hours: 54.00

Total Laboratory Hours To Be Arranged: 0.00

Total Contact Hours: 108.00

Total Out-of-Class Hours: 108.00

Prerequisite: MATH 102, MATH 110, or MATH 110B.

ENTRY STANDARDS

COURSE OUTLINE: PHY 105
D Credit – Degree Applicable
COURSE ID 004041

Cyclical Review: March 2019

	Subject	Number	Title	Description	Include
1	MATH	102	Trigonometry	Demonstrate understanding of geometric properties of parallel lines, congruent and similar polygons, and circles;	Yes
2	MATH	102	Trigonometry	solve applications problems involving polygons, parallel lines, circles, and solids;	Yes
3	MATH	102	Trigonometry	graph trigonometric functions;	Yes
4	MATH	102	Trigonometry	solve trigonometric equations;	Yes
5	MATH	102	Trigonometry	apply the basic definitions of trigonometry to solve right triangle application problems;	Yes
6	MATH	110	Precalculus	solve equations including rational, linear, polynomial, exponential, absolute value, radical, and logarithmic;	Yes
7	MATH	110	Precalculus	apply functions to model real world applications;	Yes
8	MATH	110	Precalculus	solve linear, non-linear, and absolute value inequalities;	Yes
9	MATH	110	Precalculus	graph the following types of functions and relations: polynomial, rational, exponential, logarithm, and conic section;	Yes
10	MATH	110	Precalculus	graph the basic trigonometric functions and apply changes in period, phase and amplitude to generate new graphs;	Yes
11	MATH	110	Precalculus	solve exponential and logarithmic equations;	Yes
12	MATH	110	Precalculus	solve linear and non-linear systems of equations and inequalities;	Yes
13	MATH	110	Precalculus	evaluate a trigonometric function at an angle whose measure is given in degrees and	Yes
14	MATH	110	Precalculus	simplify trigonometric expressions;	Yes
15	MATH	110	Precalculus	solve trigonometric equations;	Yes
16	MATH	110	Precalculus	apply the basic definitions of trigonometry to solve right triangle application problems;	Yes
17	MATH	110	Precalculus	represent a vector (a quantity with magnitude and direction) in the form <a,b></a,b>	Yes
18	MATH	110B	Precalculus II	apply the Fundamental Theorem of Algebra and related theorems to find the roots of a	Yes
19	MATH	110B	Precalculus II	simplify trigonometric expressions;	Yes
20	MATH	110B	Precalculus II	apply the laws of sines and cosines to solve application problems;	Yes
21	MATH	110B	Precalculus II	use mathematical induction to prove formulas;	Yes

COURSE OUTLINE: PHY 105
D Credit – Degree Applicable
COURSE ID 004041

Cyclical Review: March 2019

22	MATH	110B	Precalculus II	represent a vector in in the form < a , b >	Yes
				and ai+bj;	
23	MATH	110B	Precalculus II	solve applications using vectors.	Yes

EXIT STANDARDS

- 1 Analyze the motion of objects with constant acceleration;
- 2 apply Newton's laws of motion to the dynamics of physical systems;
- 3 use conservation laws to predict the state of dynamical systems;
- 4 calculate state properties, such as pressure, volume, and temperature, of fluid and thermodynamic systems;
- 5 collect quantitative data from observations of laboratory experiments;
- 6 using a spreadsheet program, organize data in tables, and present data using graphs;
- 7 use the properties of waves and superposition to solve physical problems including problems about resonance, oscillations, standing waves, sound, and interference.

STUDENT LEARNING OUTCOMES

- 1 apply physical laws to model real world phenomena
- 2 demonstrate proficiency in using and interpreting graphs
- 3 use technology to collect and analyze data

COURSE CONTENT WITH INSTRUCTIONAL HOURS

	Description	Lecture	Lab	Total Hours
1	Class Introduction, Representing Motion • Position, Velocity, Acceleration • S.I. Units • Scientific Notation • Algebra/Trig Review	4	0	4
2	Motion in One Dimension • Uniform Motion • Instantaneous Velocity • Constant Acceleration • Free Fall • Graphing Motion	4	0	4
3	Motion in Two Dimensions and Vectors • Using Vectors • Motion on a Ramp • Projectile Motion • Circular Motion	3	0	3

COURSE OUTLINE: PHY 105 D Credit – Degree Applicable COURSE ID 004041

Cyclical Review: March 2019

		O y c	ilcui itcvic	W. Walcii 2019
	Force and Motion			
4	Catalog of Forces Newton's Laws Free-Body Diagrams	3	0	3
	Applying Newton's Laws			
5	 Equilibrium Mass/Weight Normal Forces Friction/Drag	4	0	4
	Circular Motion, Orbits and Gravity			
6	Centripetal AccelerationApparent ForcesNewton's GravityGravity and Orbits	3	0	3
	Rotational Motion and Torque			
7	Angular VariablesRigid Body RotationMoment of InertiaRotational Dynamics	3	0	3
	Equilibrium and Elasticity			
8	 Torque and Static Equilibrium Springs and Hooke's Law Stretching and Compressing Materials 	2	0	2
	Impulse and Momentum			
9	Impulse and Momentum TheoremConservation of MomentumCollisions	3	0	3
	Energy and Work			
10	 Conservation of Energy Work as an Energy Flow Kinetic Energy Potential Energy Power 	4	0	4
	Using Energy			
11	Transforming Energy and Efficiency Energy in the Body Thermal Energy	4	0	4

COURSE OUTLINE: PHY 105
D Credit - Degree Applicable
COURSE ID 004041

Cyclical Review: March 2019

		• , .		W. March 2013
	Thermal Properties of Matter			
12	 Ideal Gas Law Gas Processes Thermal Expansion Specific Heat and Phase Changes Heat Transfer 	4	0	4
	Fluids			
13	Pressure Buoyancy Bernoulli's Equation	3	0	3
	Oscillations			
14	Harmonic Motion Types of Oscillations	2	0	2
	Traveling Waves and Sound			
15	Energy and Intensity Decibel Scale	2	0	2
	Superposition and Standing Waves			
16	 Waves on a String Harmonics Speech and Hearing Beats	3	0	3
17	Additional Content, Demonstrations, Classroom Group Work, Exams, and Quizzes	3	0	3
18	Lab	0	54	54
				108

OUT OF CLASS ASSIGNMENTS

- 1 Assigned Homework Problems
- 2 Supplemental Instruction (optional)
- 3 Pre-Lecture Reading
- 4 Pre-Lab Reading

METHODS OF EVALUATION

- 1 Graded Homework
- 2 Quizzes
- 3 Exams/Midterms
- 4 Written laboratory reports for each experiment completed in the laboratory
- 5 Final Exam

METHODS OF INSTRUCTION

COURSE OUTLINE: PHY 105
D Credit - Degree Applicable
COURSE ID 004041
Cyclical Review: March 2019

Lecture
Laboratory
Studio
✓ Discussion
✓ Multimedia
✓ Tutorial
Independent Study
Collaboratory Learning
✓ Demonstration
Field Activities (Trips)
Guest Speakers
✓ Presentations

TEXTBOOKS

Title	Туре	Publisher	Edition	Medium	Author	IBSN	Date
College Physics, a Strategic Approach	Required	Pearson	4		Knight	0-134- 60903-4	2018
Student Workbook for College Physics: A Strategic Approach Volume 1 (Chs 1-16)	Supplemental	Pearson	4		Knight		2018
Lab Manual, Physics 105, Glendale Community College	Required	Glendale Community College			Various		2018