

Cyclical Review: March 2019

COURSE DISCIPLINE: PHY

COURSE NUMBER: 106

COURSE TITLE (FULL): Algebra-based Physics: B

COURSE TITLE (SHORT): Algebra-based Physics: B

CALIFORNIA STATE UNIVERSITY SYSTEM C-ID: PHYS 110 - Algebra/Trigonometry-Based Physics B

CATALOG DESCRIPTION

PHY 106 is a general course that focuses on the study of light, electricity, magnetism, and modern physics. It includes lectures, demonstrations, problems, and laboratory work.

Total Lecture Units:3.00

Total Laboratory Units: 1.00

Total Course Units: 4.00

Total Lecture Hours:54.00

Total Laboratory Hours: 54.00

Total Laboratory Hours To Be Arranged: 0.00

Total Contact Hours: 108.00

Total Out-of-Class Hours: 108.00

Prerequisite: PHY 105.

ENTRY STANDARDS

COURSE OUTLINE: PHY 106
D Credit - Degree Applicable
COURSE ID 004042
Cyclical Review: March 2019

	Subject	Number	Title	Description	Include
1	PHY	105	General Physics	Understand basic concepts and laws of mechanics, thermodynamics, and acoustics and apply this understanding to the solution of algebra based problems in these sections of physics;	Yes
2	PHY	105	General Physics	understand the scientific method and apply it to the observations of physical phenomena in mechanics, thermodynamics, and acoustics.	Yes

EXIT STANDARDS

- 1 Calculate the electric field and potential of a charge distribution;
- 2 calculate the electric and magnetic forces on a charged body;
- 3 solve physical problems involving DC and AC currents, and analyze simple circuits;
- 4 apply the principles of geometric optics to mirrors, lenses, and optical instruments;
- 5 solve physical problems involving the wave nature of matter and its applications in modern physics.

STUDENT LEARNING OUTCOMES

- 1 apply physical laws to model real world phenomena
- 2 apply concepts in electricity and magnetism to everyday phenomena, such as lightning, batteries and magnets
- 3 use technology to collect and analyze data

COURSE CONTENT WITH INSTRUCTIONAL HOURS

	Description	Lecture	Lab	Total Hours
	Wave Optics			
1	Light as a WaveInterference of LightDiffractionThin Films	4	0	4
	Ray Optics			
2	Reflection and RefractionImage FormationThin Lenses	3	0	3

Cyclical Review: March 2019

-		Сус	Syclical Review: March 2019		
	Optical Instruments				
3	 Cameras The Human Eye and Vision Correction Microscopes Telescopes 	3	0	3	
	Electric Fields and Forces				
4	Charge Coulomb's Law The Electric Field Conductors	3	0	3	
	Electric Potential				
5	 Voltage and Electric Energy Connecting Potential and Field Capacitance and Capacitors 	3	0	3	
	Current and Resistance				
6	Conservation of CurrentResistance and Ohm's LawEnergy and Power	3	0	3	
	Circuits				
7	 Circuit Elements and Diagrams Kirchoff's Laws Series and Parallel Circuits Electricity in the Nervous System 	3	0	3	
	Magnetic Fields and Forces				
8	 Magnetic Field of Bar Magnets and the Earth Magnetic Fields due to Currents Magnetic Forces and Torques Magnets 	3	0	3	
	EM Induction and EM Waves				
9	 Induced Currents Magnetic Flux and Lenz's Law Faraday's Law Light as an Electromagnetic Wave EM Spectrum 	4	0	4	

Cyclical Review: March 2019

		clical Revie	<u>w: March 2019</u>	
10	Transformers Household Electricity Biological Effects and Electrical Safety Oscillation Circuits	3	0	3
11	Relativity • Reference Frames • Simultaneity • Time Dilation • Length Contraction	3	0	3
12	 Quantum Physics X-Ray Diffraction Photoelectric Effect Photons The Uncertainty Principle Quantization of Energy 	4	0	4
13	Atoms and Molecules Spectroscopy The Bohr Atom The Quantum Hydrogen Atom Molecules	3	0	3
14	 Nuclear Physics Nuclei and Isotopes Radioactivity and Radiation Decay and Half-Life 	3	0	3
15	Additional Content, Demonstrations, Classroom Group Work, Exams, and Quizzes	9	0	9
16	Lab	0	54	54
				108

OUT OF CLASS ASSIGNMENTS

- 1 Homework
- 2 Supplemental Instruction (optional)
- 3 Pre-Lecture Reading
- 4 Pre-Lab Reading

Cyclical Review: March 2019

METHODS OF EVALUATION

- 1 Graded Homework (e.g. assigned end-of-chapter textbook problems)
- 2 Quizzes
- 3 Exams/Midterms
- 4 Written laboratory reports for each experiment completed in the laboratory
- 5 Final Exam

METHODS OF INSTRUCTION

✓ Lecture
✓ Laboratory
Studio
Discussion
Multimedia
☑ Tutorial
Independent Study
Collaboratory Learning
Demonstration
Field Activities (Trips)
Guest Speakers
✓ Presentations

TEXTBOOKS

Title	Туре	Publisher	Edition	Medium	Author	IBSN	Date
College Physics, a Strategic Approach	Required	Pearson	4		Knight		2018
Student Workbook for College Physics: A Strategic Approach Volume 2 (Chs 17-30)	Supplemental	Pearson	4		Knight		2018
Lab Manual, Physics 106, Glendale Community College	Required	Glendale Communit y College			Various		2018