Glendale College

Course ID 003250

Course Outline of Record Report Revision - May 2023

MATH107H: Honors Linear Algebra

General Information

Author: • Suzanne Palermo

Course Code (CB01): MATH107H

Course Title (CB02): Honors Linear Algebra

Department: MATH
Proposal Start: Fall 2023

TOP Code (CB03):(1701.00) Mathematics, GeneralCIP Code:(27.0101) Mathematics, General.

SAM Code (CB09): Non-Occupational

Distance Education Approved: Yes
Will this course be taught asynchronously?: No

Course Control Number (CB00): CCC000578445
Curriculum Committee Approval Date: 05/10/2023

Board of Trustees Approval Date:

Last Cyclical Review Date: 05/01/2019

Course Description and Course Note: MATH 107H covers the topics of vector spaces, linear transformations and matrices, matrix

algebra, determinants, eigenvalues and eigenvectors, and solutions of systems of equations. Solution techniques include row operations, Gaussian elimination and matrix algebra. Specific topics in vector spaces and matrix theory include inner products, norms, orthogonality, eigenvalues, eigenspaces, linear transformations and applications. The honors section of this course features more theory and proof, and one or more projects related to the topics of this

course.

Justification: Coding/Category Change

Academic Career: • Credit

Author: • Suzanne Palermo

Academic Senate Discipline

Primary Discipline: • Mathematics

C-ID

MATH

Area

Mathematics

Transferability & Gen. Ed. Options **General Education Status (CB25)** GE Status (CSU) B4, (UC) 2 Transferability **Transferability Status** Transferable to both UC and CSU Approved **IGETC Area Approval Date Comparable Course** Area Status 2-Math **Mathematical Concepts** 09/05/2001 No Comparable Course defined. Approved and Quantitative Reasoning **CSU GE-Breadth Area** Area Status **Approval Date Comparable Course** 09/05/2001 B4-Mathematics/Quantitative Mathematics/Quantitative No Comparable Course defined. Approved Reasoning Reasoning

Status

Approved

Approval Date

08/29/2016

Comparable Course

Algebra

MATH 250 - Introduction to Linear

Units and Hours			
Summary			
Minimum Credit Units (CB07)	5		
Maximum Credit Units (CB06)	5		
Total Course In-Class (Contact) Hours	90		
Total Course Out-of-Class Hours	180		
Total Student Learning Hours	270		
Credit / Non-Credit Option	ons		
Course Type (CB04)		Noncredit Course Category (CB22)	Noncredit Special Characteristics
Credit - Degree Applicable		Credit Course.	No Value
Course Classification Code (CB11)		Funding Agency Category (CB23)	Cooperative Work Experience Education
Credit Course.		Not Applicable.	Status (CB10)

Weekly Student	Hours		Course Student Hours	
	In Class	Out of Class	Course Duration (Weeks)	18
Lecture Hours	5	10	Hours per unit divisor	54
Laboratory Hours	0	0	Course In-Class (Contact) Hou	irs
Studio Hours	0	0	Lecture	90
			Laboratory	0
			Studio	0
			Total	90
			Course Out-of-Class Hours	
			Lecture	180
			Laboratory	0
			Studio	0
			Total	180

Time Commitment Notes for Students

No value

Pre-requisites, Co-requisites, Anti-requisites and Advisories

Prerequisite

MATH104E - Calculus and Analytic Geometry II

Objectives

- evaluate definite and indefinite integrals using a variety of techniques, including integration by parts, trigonometric substitution, and partial fractions;
- evaluate improper integrals;
- model differential equations;
- solve separable differential equations;
- work with exponential and logistic models of growth and decay;
- graph conic sections;
- determine divergence or convergence of infinite sequences and series by applying convergence tests;
- differentiate and integrate power series;
- find Taylor and Maclaurin series for a function.
- graph equations in polar and parametric form;

OR

Prerequisite

MATH 104/104H

AND

Advisory

MATH105 - Multivariable and Vector Calculus

Objectives

• perform basic vector algebra operations;

Entry Standards	Entry Standards	
	intry Standards	
No value	No value	

Specifications	
Methods of Instruction Methods of Instruction	Lecture
Methods of Instruction	Discussion
Methods of Instruction	Multimedia
Methods of Instruction	Collaborative Learning
Methods of Instruction	Demonstrations

Out of Class Assignments

- Homework (e.g. problem sets related to course content);
- Group assignments and projects (e.g. prove a theorem stated in the textbook and present to proof to the instructor);

zes or more regularly scheduled exams are required
mprehensive final examination is required
Publisher Date ISBN
n

Diagonalize a matrix.

Anton, Howard	Elementary Linear Algebra	Wiley	2020	978-1-119-40677-8
Other Instructional Materi No Value	als (i.e. OER, handouts)			
Learning Outcomes	and Objectives			
Course Objectives				
Perform matrix arithmetic.				
Find the inverse of a matrix.				
Solve a linear system of equa	tions using matrix operations (Gaussian and	d Gauss Jordan elimi	ination)	
Evaluate determinants by raw	reduction and cofactor expansion.			
Identify vector spaces and sul	ospaces.			
Determine if a set of vectors i	s linearly independent.			
Find a base for and the dimer	nsion of a vector space.			
Use the Gram-Schmidt proce	ss to find an orthonormal basis for an inner	product space.		
Find the kernel and range of	a linear transformation.			
Find matrix representations o	f linear transformations.			
Find the eigenvalues and eige	envectors of a matrix.			

Determine eigenvalues and eigenspaces of matrices and linear transformations.

Use quadratic forms to obtain graphs of conic sections and quadratic surfaces.

Prove basic results in linear algebra using appropriate proof-writing techniques such as linear independence of vectors; properties of subspaces; linearity, injectivity and surjectivity of functions; and properties of eigenvectors and eigenvalues.

Use bases and orthonormal bases to solve problems in linear algebra.

Find the dimension of spaces such as those associated with matrices and linear transformations.

SLOs

Analyze vector spaces, subspaces, linear independence, span, bases, dimension, and linear transformations by applying definitions and proving theorems.

Expected Outcome Performance: 70.0

MATH Mathematics - A.A. Degree Major	Analyze, synthesize and evaluate theorems in Linear Algebra.		
	solve a variety of rudimentary and second order differential equations.		
	solve applications in math and science using derivatives, integrals, differential equations and linear algebra.		
MATH Mathematics - A.S. Degree Major	analyze, synthesize and evaluate theorems in Linear Algebra.		
	solve applications in math and science using derivatives, integrals, differential equations and linear algebra.		
<i>MATH</i> Mathematics - AS-T	analyze, synthesize and evaluate theorems in Linear Algebra.		
matiemates 7.5 T	solve applications in math and science using derivatives, integrals, differential equations and linear algebra.		
ILOs General Education	apply techniques of analysis and critical thinking to critique real world and theoretical topics and issues		

Perform matrix and vector operations and apply properties of linear systems, inverses, determinants, eigenvalues/eigenvectors, and inner products to solve problems and prove theorems.

Expected Outcome Performance: 70.0

MATH Mathematics - A.A. Degree Major	Analyze, synthesize and evaluate theorems in Linear Algebra.		
iviatrierilatics - A.A. Degree Major	solve a variety of rudimentary and second order differential equations.		
	solve applications in math and science using derivatives, integrals, differential equations and linear algebra.		
MATH Mathematics - A.S. Degree Major	analyze, synthesize and evaluate theorems in Linear Algebra.		
Mathematics - A.S. Degree Major	solve applications in math and science using derivatives, integrals, differential equations and linear algebra.		
<i>MATH</i> Mathematics - AS-T	analyze, synthesize and evaluate theorems in Linear Algebra.		
Mathematics - A3-1	solve applications in math and science using derivatives, integrals, differential equations and linear algebra.		
ILOs General Education	apply techniques of analysis and critical thinking to critique real world and theoretical topics and issues		

Additional SLO Information

Does this proposal include revisions that might improve student attainment of course learning outcomes?

No Value

Is this proposal submitted in response to learning outcomes assessment data?

No Value

If yes was selected in either of the above questions for learning outcomes, explain and attach evidence of discussions about learning outcomes.

No Value

SLO Evidence

No Value

Course Content

Lecture Content

Systems of Linear Equations and Matrices (17)

- Introduction to systems of linear equations
- Gaussian and Gauss-Jordan elimination
- Matrices and matrix operations Inverses; rules of matrix arithmetic
- Elementary matrices and finding the inverses of a matrix
- Results on systems of equations and invertibility
- Diagonal, triangular, and symmetric matrices

Determinants (8)

- The determinant function
- Evaluating determinants by raw reduction
- Properties of the determinant function
- Cofactor expansion; Cramer's rule

Vectors in R^n (10)

- Introduction to vectors (Geometric)
- Norm of a vector
- Vector arithmetic
- The dot product and projections
- The cross product
- Orthogonality of two vectors
- Lines and planes in 3-space

Euclidean Vector Spaces (7)

- Euclidean n-space
- Linear transformations from Rn to Rm
- Properties of Linear transformations from Rn to Rm

General Vector Spaces (10)

- Real vector spaces
- Subspaces
- Linear independence
- Basis and dimension
- Raw space, column space and nullspace
- · Rank and Nullity

Inner Product Spaces (10)

- Inner products
- Angle and orthogonality in inner product spaces
- Orthonormal bases; Gram-Schmidt process; QR-Decomposition
- Best approximation; least squares
- Orthogonal matrices; change of bases

Eigenvalues and Eigenvectors (11)

- Eigenvalues and eigenvectors
- Diagonalization
- Orthogonal diagonalization

Linear Transformations (11)

- General linear transformations
- Kernel and range
- Inverse linear transformations
- Matrix representations of general linear
- Transformations
- Similarity

Applications (6)

- Fourier Series
- Quadratic Forms and their applications

Total Hours = 90