Glendale College

Course ID 010236

Course Outline of Record Report

Revision - May 2023

MATH110B: Precalculus II

General Information

Author: • Suzanne Palermo

Course Code (CB01): MATH110B

Course Title (CB02): Precalculus II

Department: MATH

Proposal Start: Fall 2023

TOP Code (CB03): (1701.00) Mathematics, General CIP Code: (27.0101) Mathematics, General.

SAM Code (CB09): Non-Occupational

Distance Education Approved: Yes
Will this course be taught asynchronously?: No

Course Control Number (CB00): CCC000567881

Curriculum Committee Approval Date: 05/10/2023

Board of Trustees Approval Date: 06/20/2023

Last Cyclical Review Date: 07/01/2020

Course Description and Course Note: MATH 110B is the second of two courses that prepares students for calculus. Topics include the

study of trigonometric functions, their inverses and their graphs, identities and their proofs, trigonometric equations, and graphs of polar equations. Additional topics include complex numbers, graphs of parametric equations and conic sections, linear and nonlinear systems of equations, the binomial theorem, partial fraction decomposition, and introduction to vectors.

Note: A maximum of 7 units may be earned from Math 110B with any combination of MATH 100

and MATH 110A.

Justification: Coding/Category Change

Academic Career: • Credit

Author: • Suzanne Palermo

Academic Senate Discipline

Primary Discipline:

• Mathematics

Alternate Discipline: No value
Alternate Discipline: No value

Transferability & Gen. Ed. Options

General Education Status (CB25)

GE Status (CSU) B4, (UC) 2

Transferability

Transferability Status

Transferable to both UC and CSU

Approved

IGETC Area

Area

Status

Approval Date

Comparable Course

2-Math

Mathematical Concepts

and Quantitative Reasoning

Approved

08/31/2015

No Comparable Course defined.

CSU GE-Breadth Area

Area

Status

Approval Date

Comparable Course

B4-Mathematics/Quantitative

Reasoning

Mathematics/Quantitative Reasoning

Approved

08/31/2015

No Comparable Course defined.

C-ID MATH Area

Mathematics

Status Approved **Approval Date**

02/16/2016

Comparable Course

MATH 955 - Precalculus & Trigonometry (must take MATH 110A and MATH 110B)

Units and Hours

Summary

Minimum Credit Units (CB07) 3.5

Maximum Credit Units (CB06) 3.5

Total Course In-Class (Contact)

Hours

81

Total Course Out-of-Class

Hours

108

Total Student Learning Hours

189

Credit / Non-Credit Options

Course Type (CB04)

Noncredit Course Category (CB22)

Noncredit Special Characteristics

Credit - Degree Applicable

Credit Course.

No Value

Course Classification Code (CB11)

Funding Agency Category (CB23)

Not Applicable.

Cooperative Work Experience Education Status (CB10)

Variable Credit Course

Credit Course.

Weekly Student Hours

Course Student Hours

Out of Class In Class **Course Duration (Weeks)** 18 Lecture Hours 3 6 Hours per unit divisor 0 **Laboratory Hours** 1.5 0 Course In-Class (Contact) Hours

Studio Hours	0	0	Lecture	54
			Laboratory	27
			Studio	0
			Total	81
			Course Out-of-Class Hours	
			Lecture	108
			Laboratory	0
			Studio	0
			Total	108

Time Commitment Notes for Students

No value

Pre-requisites, Co-requisites, Anti-requisites and Advisories

Prerequisite

MATH110A - Precalculus I (in-development)

Objectives

- solve equations including rational, linear, polynomial, exponential, absolute value, radical, and logarithmic;
- apply functions to model real world applications;
- solve linear, non-linear, and absolute value inequalities;
- graph the following types of functions and relations: polynomial, rational, exponential, and logarithm;
- apply transformations to the graphs of functions and relations;
- recognize the relationship between functions and their inverses graphically and algebraically;
- solve exponential and logarithmic equations;
- apply the Fundamental Theorem of Algebra and related theorems to find the roots of a polynomial;
- apply the basic definitions of trigonometry to solve right triangle application problems;
- evaluate a trigonometric function at an angle whose measure is given in degrees and radians;
- apply the laws of sines and cosines to solve application problems.

Entry Standards	
Entry Standards	Description
No value	No value

Specifications	
Methods of Instruction	
Methods of Instruction	Lecture

Methods of Instruction	Laboratory
Methods of Instruction	Discussion
Methods of Instruction	Collaborative Learning
Methods of Instruction	Demonstrations

Out of Class Assignments

- Homework (e.g. problem sets related to course content)
- Group assignments and projects (e.g. group project to solve a "challenging" application problem from the textbook)
- Graphing calculator and/or computer assignments (e.g. utilize graphing software to explore graphs in polar coordinates)

Methods of Evaluation	Rationale
Activity (answering journal prompt, group activity)	Participation in lab activities
Exam/Quiz/Test	Quizzes
Exam/Quiz/Test	Four to seven chapter examinations are required
Exam/Quiz/Test	A two hour and twenty minute comprehensive final examination is required

Textbook Rationale

No Value

	_		_	
Tes	/th	0	oks.	

Author	Title	Publisher	Date	ISBN
Stewart, James	Precalculus, Custom Edition for Glendale College	Cengage Learning	2015	9780357958520

Other Instructional Materials (i.e. OER, handouts)

No Value

Learning Outcomes and Objectives

Course Objectives

Solve algebraic equations
Apply functions to model real world applications
Solve linear, non-linear, and absolute value inequalities
Graph the following types of functions and relations: polynomial, rational, exponential, logarithm, conic section, and trigonometric
Apply transformations to the graphs of functions and relations
Solve exponential and logarithmic equations
Apply the Fundamental Theorem of Algebra and related theorems to find the roots of a polynomial
Solve linear and non-linear systems of equations and inequalities
Graph the basic trigonometric functions and apply changes in period, phase and amplitude to generate new graphs
Evaluate and graph inverse trigonometric functions
Apply the method of partial fraction decomposition
Apply the Binomial Theorem
Prove various trigonometric identities
Evaluate a trigonometric function at an angle whose measure is given in degrees and radians
Simplify trigonometric expressions

Solve trigonometric equations		
Apply the basic definitions of trigor	nometry to solve right triangle application problems	
Apply the laws of sines and cosines	to solve application problems	
Graph both polar and parametric ed	quations	
Convert between polar and rectang	ular coordinates	
Use De Moivre's Theorem to find po	owers and roots of complex numbers	
Use mathematical induction to prov	ve formulas	
Represent a vector in in the form <	a , b > and ai+bj	
Solve applications using vectors		
SLOs		
Solve systems of equations and inc	equalities using a variety of methods.	Expected Outcome Performance: 70.0
ILOs General Education	apply techniques of analysis and critical thinking to critique real world and theoretical	al topics and issues
MATH Mathematics - A.A. Degree Major	solve applications in math and science using derivatives, integrals, differential equati	ons and linear algebra.
Use trigonometric identities as we coordinates.	ll as solve and graph trigonometric equations that may involve vectors, comple	ex numbers, and/or polar Expected Outcome Performance: 70.0
ILOs General Education	apply techniques of analysis and critical thinking to critique real world and theoretical	al topics and issues
MATH Mathematics - A.A. Degree Major	solve applications in math and science using derivatives, integrals, differential equati	ons and linear algebra.

Additional SLO Information

Does this proposal include revisions that might improve student attainment of course learning outcomes?

No Value

Is this proposal submitted in response to learning outcomes assessment data?

No Value

If yes was selected in either of the above questions for learning outcomes, explain and attach evidence of discussions about learning outcomes.

No Value

SLO Evidence

No Value

Course Content

Lecture Content

The Unit Circle and Graphs of Trigonometric Functions (10)

- Define the six trigonometric functions on the unit circle
- Graphs of functions involving sin x, cos x, tan x, cot x, csc x, and sec x
- Graphs of the trigonometric functions: period, amplitude, phase shift, and asymptotes
- Other graphs involving trigonometric functions

Trigonometric Identities (10)

- Simplifying trigonometric expressions
- Identities involving sums and differences of two angles
- Double-angle identities
- Half-angle identities
- Sum-to-product and product-to-sum identities
- Proofs of trigonometric identities

Trigonometric Equations and Inverse Trigonometric Functions (10)

- Solving trigonometric equations
- Inverse trigonometric functions
- Graphs of inverse trigonometric functions

Vectors in Two Dimensions (5)

- The algebra of vectors
- The dot product
- Applications

Complex Numbers and Polar Coordinates (10)

- Complex numbers and their graphs
- Trigonometric form of a complex number
- De Moivre's Theorem and applications
- Polar coordinates
- Polar equations and their graphs
- Parametric equations

Systems of Equations (5)

- Systems of linear equations and inequalities in two variables
- Systems of linear equations (including Guassian Elimination) in more than 2 variables
- Determinants and Cramer's Rule
- Non-linear systems of equations in 2 variables

Other Topics (4)

- Conic sections analytic geometry
- Partial fraction decomposition
- Summation notation
- Sequences and series

Total Hours=54

Laboratory/Studio Content

The Unit Circle and Graphs of Trigonometric Functions (5)

- Define the six trigonometric functions on the unit circle
- Graphs of functions involving sin x, cos x, tan x, cot x, csc x, and sec x
- Graphs of the trigonometric functions: period, amplitude, phase shift, and asymptotes
- Other graphs involving trigonometric functions

Trigonometric Identities (5)

- Simplifying trigonometric expressions
- Identities involving sums and differences of two angles
- Double-angle identities
- Half-angle identities
- Sum-to-product and product-to-sum identities
- Proofs of trigonometric identities

Trigonometric Equations and Inverse Trigonometric Functions (4)

- Solving trigonometric equations
- Inverse trigonometric functions
- Graphs of inverse trigonometric functions

Vectors in Two Dimensions (3)

- The algebra of vectors
- The dot product
- Applications

Complex Numbers and Polar Coordinates (5)

- Complex numbers and their graphs
- Trigonometric form of a complex number
- De Moivre's Theorem and applications
- Polar coordinates
- Polar equations and their graphs
- Parametric equations

Systems of Equations (3)

- Systems of linear equations and inequalities in two variables
- Systems of linear equations (including Guassian Elimination) in more than 2 variables
- Determinants and Cramer's Rule
- Non-linear systems of equations in 2 variables

Other Topics (2)

- Conic sections analytic geometry
- Partial fraction decomposition
- Summation notation
- Sequences and series

Total Hours=27