Course Outline of Record Report

Created - December 2023

MATH100+: College Algebra for STEM with Support

_			4.
(ien	erai	Intorr	nation

Author: • Suzanne Palermo

Fuhrmann, John

12/13/2023

Course Code (CB01): MATH100+

Course Title (CB02): College Algebra for STEM with Support

Department: MATH
Proposal Start: Fall 2024

TOP Code (CB03): (1701.00) Mathematics, General CIP Code: (27.0101) Mathematics, General.

SAM Code (CB09): Non-Occupational

Distance Education Approved: No
Will this course be taught No

asynchronously?:

Course Control Number (CB00): CCC000642842

Curriculum Committee Approval Date: 12/13/2023

Board of Trustees Approval Date: 01/09/2024

Course Description and Course Note:

Last Cyclical Review Date:

MATH 100+ is a college (transfer) level course in algebra with a built-in support lab component. We cover many topics, including functions and their inverses, transformations of functions, first and second-degree equations and inequalities, logarithmic and exponential equations, graphs of linear and quadratic functions, conic sections, polynomial functions, exponential functions, logarithmic functions, real-world Science, Technology, Engineering, and Mathematics (STEM) applications, remainder and factor theorems, properties and applications of complex numbers, systems of equations, and sequences and series. When appropriate, we will discuss the cultural and historical context for these concepts, and throughout the course, we explore strategies for successful math-classroom experience and critical thinking/problem-solving strategies. Note: You will receive no credit for Math 100+ if you have completed Math 100, Math 110 or Math 110A AND Math 110B. You will receive a total of 5 units of credit for completion of Math 100+ and Math 110A.

Justification: New Course

Academic Career: • Credit

Author: • Suzanne Palermo

Academic Senate Discipline

Primary Discipline: • Mathematics

Alternate Discipline: Alternate Discipline:

Course Development Basic Skill Status (CB08) Course Special Class Status (CB13) **Grading Basis** Course is not a basic skills course. Course is not a special class. • Grade with Pass / No-Pass Option Pre-Collegiate Level (CB21) Course Support Course Status (CB26) Allow Students to Gain Credit by Exam/Challenge Not applicable. Course is not a support course

Transferability & Gen. Ed. Options

General Education Status (CB25)

GE Status (CSU) B4, (UC) 2

Transferability

Transferability Status

Transferable to both UC and CSU		Appro		
IGETC Area	Area	Status	Approval Date	Comparable Course
2-Math	Mathematical Concepts and Quantitative Reasoning	Pending	No value	No Comparable Course defined.
CSU GE-Breadth Area	Area	Status	Approval Date	Comparable Course
B4-Mathematics/Quantitative Reasoning	Mathematics/Quantitative Reasoning	Pending	No value	No Comparable Course defined.
C-ID	Area	Status	Approval Date	Comparable Course
MATH	Mathematics	Pending	No value	MATH 151 - College Algebra for

Units and Hours

Summary	
Minimum Credit Units (CB07)	4.5
Maximum Credit Units (CB06)	4.5
Total Course In-Class (Contact) Hours	108
Total Course Out-of-Class Hours	144
Total Student Learning	252

Hours

Credit / Non-Credit Options

Course Type (CB04)	Noncredit Course Category (CB22)	Noncredit Special Characteristics	
Credit - Degree Applicable	Credit Course.	No Value	
Course Classification Code (CB11) Credit Course.	Funding Agency Category (CB23) Not Applicable.	Cooperative Work Experience Education Status (CB10)	
Variable Credit Course			
Weekly Student Hours	Course Student Hours		

	In Class	Out of Class	Course Duration (Weeks)	18
Lecture Hours	4	8	Hours per unit divisor	54
Laboratory	2	0	Course In-Class (Contact) Ho	ours
Hours			Lecture	72
Studio Hours	0	0	Laboratory	36
			Studio	0
			Total	108
			Course Out-of-Class Hours	
			Lecture	144
			Laboratory	0
			Studio	0
			Total	144

Time Commitment Notes for Students

No value

Pre-requisites, Co-requisites, Anti-requisites and Advisories

Prerequisite

Placement is based on academic background or satisfactory completion of MATH 90.

OR

Prerequisite

MATH90 - Intermediate Algebra for BSTEM

Objectives

- Solve absolute value equations and inequalities.
- Solve linear equations and compound inequalities.
- Perform operations with polynomials.
- Simplify complex fractions.
- Perform operations with radical expressions.
- Simplify expressions with rational exponents.
- Solve rational equations.
- Solve equations with radicals.
- Find the equation of a line parallel or perpendicular to a given line.
- Solve a system of linear equations using elimination substitution.
- Solve quadratic equations with real and complex solutions.
- Find the inverse of a function.
- Use the properties of logarithms to simplify and expand expressions.
- Solve logarithmic and exponential equations.

- Graph parabolas and circles centered at any point.
- Graph functions (linear, quadratic, exponential, logarithmic).

Entry Standards	
Entry Standards	
No value	

Specifications	
Methods of Instruction Methods of Instruction	Lecture
Methods of Instruction	Laboratory
Methods of Instruction	Discussion
Methods of Instruction	Collaborative Learning
Methods of Instruction	Demonstrations
Methods of Instruction	Presentations

Out of Class Assignments

- Homework (eg. problem sets related to course content.)
- Group assignments and projects (e.g. determine the shape and dimensions of maximum area using a string of fixed length, determine if the shoe size and height of a group of students form a linear relationship)
- Graphing calculator and/or computer assignments

Methods of Evaluation	Rationale
Project/Portfolio	Projects (e.g. engineering presentation on structure of buildings and bridges)
Exam/Quiz/Test	Quizzes
Exam/Quiz/Test	Four to six chapter examinations are required
Exam/Quiz/Test	A comprehensive final examination is required

No Value				
Textbooks Author	Title	Publisher	Date	ISBN
Blitzer, Bob	College Algebra	Pearson	2019	9780136165774
Other Instructional Ma	aterials (i.e. OER, handouts)			
Materials Fee No value				
Learning Outcom	nes and Objectives			
Course Objectives				
Analyze the following fur and domain and range).	nctions: polynomial, rational, radical, ab	solute value, exponential an	d logarithmic (includ	ing definitions, evaluation,
Graph functions, includin	g asymptotic behavior, intercepts, verti	ices and transformations.		
Perform operations on fu	nctions.			
Find inverses of functions	s; solve equations including: linear, poly	nomial, radical, rational, abs	solute value, exponen	itial and logarithmic.
Solve linear, absolute val	ue, and non-linear inequalities.			
Solve linear and non-line the roots of a polynomia	ar systems of equations and inequalitie l.	es; apply the Fundamental Tl	neorem of Algebra ar	nd related theorems to find
Model and solve STEM a	oplication problems.			
Graph and algebraically a	analyze conic sections.			
Use formulas to find sum	s of finite and infinite series.			

Textbook Rationale

SLOs

Solve and graph various functions, equations, and inequalities at the college algebra level.

Expected Outcome Performance: 70.0

Critically analyze mathematical formulas, models, and graphs and be able to explain solutions clearly and effectively.

Expected Outcome Performance: 70.0

Additional SLO Information

Does this proposal include revisions that might improve student attainment of course learning outcomes?

No

Is this proposal submitted in response to learning outcomes assessment data?

No

If yes was selected in either of the above questions for learning outcomes, explain and attach evidence of discussions about learning outcomes.

No Value

SLO Evidence

No Value

Course Content

Lecture Content

Basic Concepts (9 hours)

- Real numbers
- Exponents and radicals
- Algebraic expressions
- Rational expressions
- Mindset (growth, resilience, hardiness, and grit)

Equations and Inequalities (12 hours)

- First degree equations
- Quadratic equations
- Complex numbers
- Other types of equations
- Linear inequalities
- Quadratic and other non-linear inequalities
- Applications to STEM problems (uniform motion, geometry, mixture)
- Math test-taking techniques

Functions and Their Graphs (13 hours)

- Cartesian Coordinate System
- Graphs and equations
- Graphs of functions and relations including transformations
- Quadratic functions
- Operations on functions
- One-to-one functions and inverses
- College math support resources

Polynomial Functions (13 hours)

- The Remainder Theorem and the Factor Theorem
- Synthetic division
- The Fundamental Theorem of Algebra
- Rational roots

- Graphing polynomial functions
- Rational functions
- STEM optimization applications
- Study Skills: Critical thinking skills

Exponential and Logarithmic Functions (12 hours)

- Exponential functions
- Logarithmic functions
- Properties of logarithms
- Exponential and logarithmic equations
- Common and natural logarithms
- Applications to population growth and decay

Systems of Equations (8 hours)

- Systems of linear equations in 2 variables
- Systems of linear equations in more than 2 variables
- Non-linear systems of equations in 2 variables
- Modeling STEM problems using systend of equations

Other Topics (5 hours)

- Conic sections analytic geometry
- Sequences and series

Total hours: 72

Laboratory/Studio Content

Algebra Review Content (18 hours)

- Review of Factoring
- Review of Exponents
- Review of Simplifying Equations
- Review of Solving Equations

College Algebra Content (18 hours)

- Functions
- Graphing
- Solving Equations

Total hours: 36