MATH109: Basics of Abstract Mathematics

General Information

Author: • Suzanne Palermo

• Djrbashian, Ashot

Course Code (CB01): MATH109

Course Title (CB02): Basics of Abstract Mathematics

Department: MATH
Proposal Start: Fall 2024

TOP Code (CB03): (1701.00) Mathematics, General CIP Code: (27.0101) Mathematics, General.

SAM Code (CB09): Non-Occupational

Distance Education Approved: No
Will this course be taught No

asynchronously?:

Course Control Number (CB00): CCC000642844

Curriculum Committee Approval Date: 12/13/2023

Board of Trustees Approval Date: 01/09/2024

Last Cyclical Review Date: 12/13/2023

Course Description and Course Note: MATH 109 is devoted to the theory of algebraic equations and the basic notions of abstract

mathematics: sets, groups, rings, fields. Special topics include logic, methods of

mathematical proofs and one of the most celebrated topics of the abstract algebra, Galois

theory.

Justification: New Course

Academic Career: • Credit

Author: • Suzanne Palermo

Academic Senate Discipline

Primary Discipline:

Mathematics

Alternate Discipline: Alternate Discipline:

Course Development

Course is not a basic skills course.

Basic Skill Status (CB08) Course Special Class Status (CB13)

Course is not a special class.

Grading Basis

• Grade with Pass / No-Pass Option

Allow Students to Gain Credit Exam/Challenge	by	Pre-Collegiate Le	evel (CB21)		ourse Support Course Status (CB26)
- , : 9 -		Not applicable.		Co	ourse is not a support course
Transferability & Gen. I	Ed. Optior	18			
General Education Status (CB2	?5)				
Not Applicable					
Transferability			Transf	erability Status	
Transferable to both UC and CSU			Appro	ved	
CSU GE-Breadth Area	Area		Status	Approval Date	Comparable Course
B4-Mathematics/Quantitative Reasoning	Mathemat Reasoning	ics/Quantitative	Denied	09/03/2024	No Comparable Course defined.
IGETC Area	Area		Status	Approval Date	Comparable Course
2-Math	Mathemat and Quant Reasoning		Pending	No value	UCI - MATH 13
Units and Hours					
Summary					
Minimum Credit Units (CB07)	3				
Maximum Credit Units (CB06)	3				
Total Course In-Class (Contact) Hours	54				
Total Course Out-of-Class Hours	108				
Total Student Learning Hours	162				
Credit / Non-Credit Opt	ions				
Course Type (CB04)		Noncredit Cours	se Category (CB22) N	Ioncredit Special Characteristics
Credit - Degree Applicable		Credit Course.		Ν	lo Value

Funding Agency Category (CB23)

Not Applicable.

Cooperative Work Experience

Education Status (CB10)

Course Student Hours

Course Classification Code (CB11)

Variable Credit Course

Weekly Student Hours

Credit Course.

In Class	Out of Class		Course Duration (Weeks)	18
Lecture Hours	3	6	Hours per unit divisor	54
Laboratory	0	0	Course In-Class (Contact) Hour	's
Hours			Lecture	54
Studio Hours	0	0	Laboratory	0
			Studio	0
			Total	54
			Course Out-of-Class Hours	
			Lecture	108
			Laboratory	0
			Studio	0
			Total	108

Time Commitment Notes for Students

No value

Pre-requisites, Co-requisites, Anti-requisites and Advisories

Prerequisite

MATH103E - Calculus & Analytic Geometry I

Objectives

- Find limits of functions at real values and at infinity using numerical, graphical, and algebraic approaches.
- Use the derivative for rate of change problems.

Entry Standards
Entry Standards
Solve algebraic equations.
Apply the Fundamental Theorem of Algebra and related theorems to find the roots of a polynomial.
Solve linear systems of equations.

Specifications

Methods of Instruction

Methods of Instruction	Lecture
Methods of Instruction	Presentations
Methods of Instruction	Discussion
Out of Class Assignments	

- Homework assignments (e.g. problem sets related to course content)
- Group or individual projects (e.g. solving more challenging problems from other sources and applications of the underlying theory)
- Reading assignments (e.g. reading biographies of the principal creators of the theory Niels Henrik Abel and Evariste Galois)

, , , , , , , , , , , , , , , , , , ,	e.g. reading biographies of the principa	,		,
Methods of Evaluation	Rationale			
Exam/Quiz/Test	Quizzes			
Exam/Quiz/Test	Three to four regular	ly scheduled exams		
Exam/Quiz/Test	Comprehensive final	Comprehensive final examination		
Textbook Rationale				
No Value				
Textbooks				
Author	Title	Publisher	Date	ISBN
Djrbashian, Ashot	From Polynomial Equations to Galois Theory	Yerevan, Zangak Publications	2022	9939684134
Other Instructional Material	ls (i.e. OER, handouts)			
No Value				
Materials Fee				

Learning Outcomes and Objectives Course Objectives Prove and apply basic results about solving algebraic equations.

	spaces, and fields.
Apply the notion of field extension and solvable groups.	
Apply the basic ideas of Galois theory to determine solvability of an equation by radicals.	
SLOs	
Distinguish between different types of algebraic structures, such as groups, rings, fields, integral destatements related to them.	omains, vector spaces and prove Expected Outcome Performance: 70.0
Apply basic notions of Galois theory to determine if a given equation is solvable by radicals.	Expected Outcome Performance: 70.0
Additional SLO Information	
Does this proposal include revisions that might improve student attainment of course learning \ensuremath{No}	outcomes?
	outcomes?
No Is this proposal submitted in response to learning outcomes assessment data?	
No Is this proposal submitted in response to learning outcomes assessment data? No If yes was selected in either of the above questions for learning outcomes, explain and attach e	
Is this proposal submitted in response to learning outcomes assessment data? No If yes was selected in either of the above questions for learning outcomes, explain and attach e outcomes.	

Use basic notions of set theory, including cardinality of sets.

Course Content

Lecture Content

Review of Solutions of Equations and Mathematical Proofs (10 hours)

- Solutions of equations of degree three and higher
- Trigonometric form of complex numbers and roots of unity
- Rules of logic, truth tables and methods of proof: constructive, by contradiction, method of Mathematical Induction
- Operations on sets: unions, intersections, difference, cardinality of a set

Groups (15 hours)

- Definitions and simplest examples of groups
- Properties of groups, subgroups, cosets, and factor groups
- Permutations: the symmetric and alternating groups

Rings, Fields, Vector Spaces (14 hours)

- Definitions of rings and fields, examples
- · Vector spaces, linear independence and bases, an overview
- Field extensions, the main ideas

Elementary Galois Theory (15 hours)

- The overview of the theory. What are the reasons of solvability?
- Solvable groups and solvable equations, relationships between groups and fields
- The Fundamental Theorem of Galois Theory and solutions by radicals. The most elementary approach.

Total hours: 54