Glendale College Course Outline of Record Report

General Information Author: • Christopher Herwerth Course Code (CB01) : ENGR120 Course Title (CB02) : 3D Printing and Modeling Department: ENGR **Proposal Start:** Spring 2025 TOP Code (CB03) : (0924.00) Engineering Technology, General (requires Trigonometry) CIP Code: (15.0000) Engineering Technologies/Technicians, General. SAM Code (CB09) : Possibly Occupational **Distance Education Approved:** No Will this course be taught asynchronously?: No Course Control Number (CB00) : CCC000620917 **Curriculum Committee Approval Date:** 06/12/2024 10/15/2024 Board of Trustees Approval Date: Last Cyclical Review Date: 06/12/2024 **Course Description and Course Note:** ENGR 120 provides students with the basic knowledge of 3D printing (i.e., additive manufacturing; rapid prototyping) and modeling, as well as its impact within the engineering and manufacturing community. Students have the opportunity to explore the interaction between computer aided design (CAD), computer aided manufacturing (CAM), and additive manufacturing systems by participating in the design and prototyping of an actual part using the latest 3D printers. Justification: Mandatory Revision Academic Career: • Credit Mode of Delivery: No value Author: • Christopher Herwerth **Course Family:** No value

Academic Senate Discipline

Primary Discipline:	Engineering Technology
Alternate Discipline:	No value
Alternate Discipline:	No value

Course Development			
Basic Skill Status (CB08)	Course Special Class Status (CB13)	Grading Basis	
Course is not a basic skills course.	Course is not a special class.	Grade with Pass / No-Pass Option	
Allow Students to Gain Credit by	Pre-Collegiate Level (CB21)	Course Support Course Status (CB26)	
Exam/Challenge	Not applicable.	Course is not a support course	

General Education and C-ID

General Education Status (CB25)	
Not Applicable	
Transferability	Transferability Status
Transferable to CSU only	Approved

Units and Hours

Summary	
Minimum Credit Units (CB07)	2
Maximum Credit Units (CB06)	2
Total Course In-Class (Contact) Hours	72
Total Course Out-of-Class Hours	36
Total Student Learning Hours	108
Credit / Non-Credit Option	ns

Course Type (CB04)	Noncredit Course Category (CB22)	Noncredit Special Characteristics
Credit - Degree Applicable	Credit Course.	No Value
Course Classification Code (CB11)	Funding Agency Category (CB23)	Cooperative Work Experience Education
Credit Course.	Not Applicable.	Status (CB10)
Variable Credit Course		
Weekly Student Hours	Course Stud	ent Hours
In Class	Out of Class Course Duration	on (Weeks) 18

			,	
Lecture Hours	1	2	Hours per unit divisor	0
Laboratory Hours	3	0	Course In-Class (Contact) Hours	
Studio Hours	0	0	Lecture	18

Laboratory	54
Studio	0
Total	72
Course Out-of-Class Hours	
Lecture	36
Laboratory	0
Studio	0

Time Commitment Notes for Students

No value

Units and Hours - Weekly Specialty Hours			
Activity Name	Туре	In Class	Out of Class
No Value	No Value	No Value	No Value

Pre-requisites, Co-requisites, Anti-requisites and Advisories

Advisory

ENGR111 - Computer Aided Design SOLIDWORKS I

Objectives

• demonstrate a basic knowledge of computer aided manufacturing by completion of a series of engineering documents;

OR

Advisory

ENGR122 - Engineering Graphics

Objectives

- use computer aided design software to create 3D models, assemblies, exploded views and engineering drawings;
- apply the engineering design process and demonstrate its steps in a design project.

AND

Advisory

ESL141 - Grammar And Writing IV

Objectives

• Compose a 400 to 450-word thesis-based essay which: (a) summarizes and cites appropriately a reading passage provided as a prompt, (b)includes a clear thesis statement, (c) uses evidence to support the thesis, (d) shows clear organization into an introduction, body, and conclusion, and (e) uses appropriate rhetorical modes such as comparison/contrast, cause/effect, and persuasion in order to support a thesis.

OR

Advisory

ENGL101 - Introduction to College Reading and Composition

Objectives

• Read, analyze, and evaluate a variety of primarily non-fiction readings for content, context, and rhetorical merit with consideration of tone, audience, and purpose.

AND

Advisory

MATH100 - College Algebra for STEM

Objectives

- Perform operations on functions.
- Solve equations including: linear, polynomial, radical, rational, absolute value, exponential and logarithmic.
- Model and solve STEM application problems.

Entry Standards

Entry Standards

Course Limitations

Cross Listed or Equivalent Course

Specifications	
Methods of Instruction Methods of Instruction	Lecture
Methods of Instruction	Laboratory
Methods of Instruction	Discussion

Methods of Instruction		Multimedia			
Methods of Instruction		Tutorial			
Methods of Instruction		Collaborative Learning			
Methods of Instruction		Demonstrations			
Methods of Instruction		Presentations			
Out of Class Assignments					
 Homework (e.g. reading, 3D Individual and/or group proj. 	modeling of a ects (e.g. desig	a part, question sets gn, print, and assemble h	eadphone parts)		
Methods of Evaluation		Rationale			
Activity (answering journal prompt, g activity)	roup	Assignments			
Exam/Quiz/Test		Quizzes			
Presentation (group or individual)		Midterm presentation			
Project/Portfolio		Project evaluations			
Presentation (group or individual)		Final project presentati	on		
Textbook Rationale					
No Value					
Textbooks					
Author	Title		Publisher	Date	ISBN
lan Gibson, David Rosen, Brent Stucker, Mahyar Khorasani	Additive M Technologi	anufacturing es	Switzerland, Springer	2021	978-3-030-56127-7
Other Instructional Materials (i.e.	OER, hando	outs)			
No Value					

Materials Fee

No value

Learning Outcomes and	l Objectives		
Course Objectives			
Describe key characteristics and va	rious types of additive manufacturing.		
Design a 3D part file to convert to	STL (Stereolithography) file.		
Operate a Fused Deposit Modeling	ı (FDM) system.		
Apply safety rules, regulations and	procedures.		
Convert STL file to gcode with Slici	Convert STL file to gcode with Slicing Software for direct manufacturing on a FDM (Fused Deposit Modeling system, also known as a 3D printer.		
Troubleshoot and maintain 3D prir	ters.		
SLOs			
Manage the additive manufacturi	ng process from design conception to prototype. Expected Outcome Performance: 70	.0	
ILOs Core ILOs	Analyze and solve problems using critical, logical, and creative thinking; ask questions, pursue a line of inquiry, and derive conclusions; cultivate creativity that leads to innovative ideas.		
	Demonstrate depth of knowledge in a course, discipline, or vocation by applying practical knowledge, skills, abilities, theories, or methodologies to solve unique problems.		
ENGR Civil Engineering	Apply knowledge of mathematics, science and engineering; identify, form and solve engineering problems	_	
	Demonstrate introductory skills using modern engineering tools necessary for engineering practice.		
ENGR Engineering Technology - CAD & Design Drafting	Demonstrate techniques to accomplish drawings and 3D models utilizing different various computer aided design (CAD) software		
ENGR Engineering Entrepreneurship Skill	Learn hands-on skills and problem solving techniques for businesses related to engineering design, installation, manufacturing, testing, technical sales, maintenance, and other such topics in engineering technology.		
Awdru	Learn the engineering design process and how technical products are made, assembled, and integrated into complex systems.		

ENGR Electrical Engineering A.S. Degree Major	analyze engineering problems and make appropriate decisions with the supervision of a licensed engineer;
	demonstrate appropriate technical written, verbal, drawing, and communication skills;
	design a system, component, or process with supervision of a licensed engineer to meet desired needs.
	use science and mathematical skills required for occupational needs;
ENGR	analyze engineering problems and make appropriate decisions with the supervision of a licensed engineer;
Computer Engineering AS	demonstrate appropriate technical written, verbal, drawing, and communication skills;
	design a system, component, or process with supervision of a licensed engineer to meet desired needs.
ENGR Mechanical Engineering - A S	analyze engineering problems and make appropriate decisions with the supervision of a licensed engineer;
Degree Major	demonstrate appropriate technical written, verbal, drawing, and communication skills;
	design a system, component, or process with supervision of a licensed engineering to meet desired needs.
	use science and mathematical skills required for occupational needs;
Describe various types of additive	manufacturing technology and their relative advantages and disadvantages. Expected Outcome Performance: 70.0
ILOs Core ILOs	Analyze and solve problems using critical, logical, and creative thinking; ask questions, pursue a line of inquiry, and derive conclusions; cultivate creativity that leads to innovative ideas.
ENGR Civil Engineering	Apply knowledge of mathematics, science and engineering; identify, form and solve engineering problems
	Demonstrate introductory skills using modern engineering tools necessary for engineering practice.
ENGR Engineering Technology - CAD & Design Drafting	Discuss how the design process and design/drawing techniques are used with other engineering processes to create a finished product.
ENGR Engineering Entrepreneurship Skill Award	Learn hands-on skills and problem solving techniques for businesses related to engineering design, installation, manufacturing, testing, technical sales, maintenance, and other such topics in engineering technology.
Awaru	Learn the engineering design process and how technical products are made, assembled, and integrated into complex systems.
ENGR Electrical Engineering A.S. Degree Major	demonstrate appropriate technical written, verbal, drawing, and communication skills;
ENGR Computer Engineering AS	demonstrate appropriate technical written, verbal, drawing, and communication skills;
ENGR Mechanical Engineering - A.S. Degree Major	demonstrate appropriate technical written, verbal, drawing, and communication skills;
Demonstrate an understanding of	operation and maintenance of an Fused Deposit Modeling (FDM) modeling machine. Expected Outcome Performance: 70.0
ILOs Core ILOs	Analyze and solve problems using critical, logical, and creative thinking; ask questions, pursue a line of inquiry, and derive conclusions; cultivate creativity that leads to innovative ideas.
	Demonstrate depth of knowledge in a course, discipline, or vocation by applying practical knowledge, skills, abilities, theories, or methodologies to solve unique problems.
ENGR Civil Engineering	Apply knowledge of mathematics, science and engineering; identify, form and solve engineering problems
	Demonstrate introductory skills using modern engineering tools necessary for engineering practice.

ENGR Engineering Technology - CAD & Design Drafting	Demonstrate techniques to accomplish drawings and 3D models utilizing different various computer aided design (CAD) software
ENGR Engineering Entrepreneurship Skill Award	Learn hands-on skills and problem solving techniques for businesses related to engineering design, installation, manufacturing, testing, technical sales, maintenance, and other such topics in engineering technology.
	Learn the engineering design process and how technical products are made, assembled, and integrated into complex systems.
ENGR Computer Engineering AS	analyze engineering problems and make appropriate decisions with the supervision of a licensed engineer;
	demonstrate appropriate technical written, verbal, drawing, and communication skills;
ENGR Mechanical Engineering - A.S. Degree Major	use science and mathematical skills required for occupational needs;
ENGR Electrical Engineering A.S. Degree Major	use science and mathematical skills required for occupational needs;
ENGR Mechanical Engineering - A.S. Degree Major ENGR Electrical Engineering A.S. Degree Major	use science and mathematical skills required for occupational needs; use science and mathematical skills required for occupational needs;

Additional SLO Information

Does this proposal include revisions that might improve student attainment of course learning outcomes? No

Is this proposal submitted in response to learning outcomes assessment data?

No

If yes was selected in either of the above questions for learning outcomes, explain and attach evidence of discussions about learning outcomes.

No Value

SLO Evidence

No Value

Course Content

Lecture Content

Introduction and Overview (6 hours)

- Definition of Additive Manufacturing (AM)
- Various AM processes and materials
- American Society for Testing and Materials (ASTM) standards
- Current industrial trends
- Existing hardware and software systems
- Relationship to traditional manufacturing methods
- Secondary processes
- Uses of additively manufactured parts

3D Model Generation (4 hours)

- Review of 3D modeling principles
- Part sketching and extrusion
- Dimensioning

- 3D laser scanning
- Laser scanned file cleaning and assembly

Input File Preparation (5 hours)

- Stereolithography (STL) file format
- STL faceting and resolution
- Exporting CAD model to STL file
- Insight software application
- Modeler setup
- Orientation and scaling
- STL slicing
- Toolpath creation and parameter settings
- Identification and correction of toolpath problems
- Exporting to Chromeleon Backup Archive (CMB) file format
- Control Center software application

Modeling System (3 hours)

- Safety protocols
- Operator console
- System components
- Sensor and instrument status
- Maintenance procedures
- Tip and material change
- Calibration
- Building a job
- Model and support material removal

Total Hours: 18

Laboratory/Studio Content

Introduction and Overview (3 hours)

- Definition of Additive Manufacturing (AM)
- Various AM processes and materials
- American Society for Testing and Materials (ASTM) standards
- Current industrial trends
- Existing hardware and software systems
- Relationship to traditional manufacturing methods
- Secondary processes
- Uses of additively manufactured parts

3D Model Generation (11 hours)

- Review of 3D modeling principles
- Part sketching and extrusion
- Dimensioning
- 3D laser scanning
- Laser scanned file cleaning and assembly

Input File Preparation (13 hours)

- Stereolithography (STL) file format
- STL faceting and resolution
- Exporting CAD model to STL file
- Insight software application
- Modeler setup
- Orientation and scaling
- STL slicing
- Toolpath creation and parameter settings
- Identification and correction of toolpath problems
- Exporting to Chromeleon Backup Archive (CMB) file format
- Control Center software application

Modeling System (11 hours)

- Safety protocols
- Operator console
- System components

- Sensor and instrument status
- Maintenance procedures
- Tip and material change
- Calibration
- Building a job
- Model and support material removal

Final Comprehensive Project (16 hours)

- Team formation
- Project selection/proposal
- Generation of models
- Preparation of CMB file
- Completion of part
- Project presentation

Total Hours: 54

Additional Information

Is this course proposed for GCC Major or General Education Graduation requirement? If yes, indicate which requirement in the two areas provided below.

No

GCC Major Requirements

No Value

GCC General Education Graduation Requirements

No Value

Repeatability

Not Repeatable

Justification (if repeatable was chosen above)

No Value

Resources

Did you contact your departmental library liaison?

No

If yes, who is your departmental library liason?

No Value

Did you contact the DEIA liaison?

No

Were there any DEIA changes made to this outline?

No Value

If yes, in what areas were these changes made:

No Value

Will any additional resources be needed for this course? (Click all that apply)

No Value

If additional resources are needed, add a brief description and cost in the box provided.

No Value